搜索

x
专题

更多 
领域
文章类型

水科学重大关切问题研究

编者按:

水是世界上最重要也是最为奇特的物质.由于水的性质都具有反常的特点,水的理论和实验研究自身都极具挑战性,水参与各种物理、地质、化学、生命等过程,水的科学利用关系着人类的命运,水科学研究的重大意义是显而易见的.过去十年来,中国科学院组织相关研究所投入了可观的人力、物力全方位开展水科学研究,取得了一批国际水平的研究成果.本期“水科学重大关切问题研究专辑”收录了中国科学院物理所、化学所、上海应用物理所、国家纳米中心、中国科学技术大学和北京大学等课题组在最近一段时期的研究论文共8篇,内容涵盖光解水机理、界面水与水中的催化、结合水的定义与量化、限域结构中水与水中物质的输运、生物分子结合水的结构与动力学、水对土壤的调节机制、水合物的结构与利用,以及用于微观水结构研究的探针显微技术等具有重大关切的课题.我们希望通过本期水科学专辑的发表引起我国科学界和政府部门对水科学研究的重视,吸引更多的研究人员开展水科学的研究,促进水科学研究的蓬勃发展.

客座编辑:中国科学院物理研究所 杨国桢
物理学报. 2019, 68(1).
光解水的原子尺度机理和量子动力学
申钰田, 孟胜
2019, 68 (1): 018202. doi: 10.7498/aps.68.20181312
摘要 +
利用阳光直接将水分解为不含碳的氢气燃料和氧气是面向全球能源危机环保且低成本的解决方案.得益于电子结构理论和量子模拟方法的进步,人们已经能够直接研究在纳米颗粒上等离激元诱导光解水过程在原子尺度上的反应机理和超快动力学.本文简述近年来的相关工作进展.吸附在氧化物薄膜上的金纳米颗粒很有希望成为水分解的高效新型光催化剂.在光激发条件下,水分解反应速率和光强、热电子转移之间有强相关性.水分解速率不仅取决于光吸收强度,还受到等离激元量子振动模式的调控.这对于太阳能光解水器件中纳米颗粒的设计有借鉴意义.我们发现液态水在金团簇等离激元催化下100 fs内就能产生氢气.超快量子动力学模拟表明,该过程中场增强起主导作用,从金属到水反键态的超快电荷转移也扮演着重要角色.综合这些原子尺度上的量子动力学研究,我们提出受激水分子中氢原子高速碰撞(速度远远超出其热速度)合成氢分子的“链式反应”机理.
界面水与催化
胡钧, 高嶷
2019, 68 (1): 016803. doi: 10.7498/aps.68.20182180
摘要 +
水的催化反应在界面进行,对新能源开发和环境保护等领域具有至关重要的作用.理解催化反应中材料界面水分子的结构、物性和分子机制,对于解决清洁能源、污水处理等关系国计民生的重大问题具有关键意义.由于水的复杂性,对于水分子在催化反应中的作用至今仍存在很大争议.界面水分子在催化反应中作为反应物、催化剂、溶剂,或是兼而有之,一直是科学界争论的热点话题.近年来,随着原位实验技术和计算机能力的快速提高,人们已经能够在原子尺度对催化反应中的界面水分子行为进行实时观测和理论模拟,为解析水在催化反应中的作用提供了实验依据和理论基础.本文简述当前催化反应中界面水研究面临的巨大机遇和挑战,以及现有实验和理论方法的最新进展和所遇到的困难,为设计优化与水应用相关的高效催化剂提供可行的思路.
水溶液中结合水的定义与量化
王强, 曹则贤
2019, 68 (1): 015101. doi: 10.7498/aps.68.20181742
摘要 +
水溶液中溶质的结合水具有不同于远离溶质的自由水的结构和性质.结合水的存在对水和溶质结构和动力学性质均具有显著甚至决定性的影响.然而,对结合水动力学和热力学性质的定量理解在诸多方面一直存在争议甚至严重分歧,其中重点包括如何定义和量化结合水,如何表征结合水和自由水的动力学差别,结合水如何参与生物大分子各种生物功能过程,以及溶质或界面影响结合水结构与性质的途径等.给出结合水定义的物理学依据和量化方法,是深入理解上述问题的第一步.本文简述了各种不同谱学方法定义结合水的基本原理及量化的困难,强调具有不同时间和空间响应尺度的测试方法所得结合水数不必完全可比.此外,系列水溶液物性随浓度升高会明显改变其浓度依赖关系,相应拐点浓度常被用于量化稀溶液中的溶质结合水数.我们近期研究的水溶液玻璃化转变温度-浓度关系,为结合水的定义、量化和水溶液的三区划分提供了物理依据,同时揭示了上述利用性质-浓度关系拐点浓度量化结合水方法的不足.
低维限域结构中水与物质的输运
张锡奇, 闻利平, 江雷
2019, 68 (1): 018801. doi: 10.7498/aps.68.20182131
摘要 +
低维限域结构中水与物质的输运研究,对于解决界面化学和流体力学中的遗留问题十分关键.近年来,研究人员采用分子动力学模拟和实验手段研究低维限域结构中水与物质的输运,并将其应用于物质输运、纳米限域化学反应、纳米材料制备等领域.本文从理论和实验的角度总结一维和二维纳米通道的水与物质输运,介绍了本研究组提出的“量子限域超流体”概念,并用于解释纳米通道中超快物质的输运现象;在此基础上概述了一维纳米通道中的分子动力学模拟和水浸润性,以及外部环境(如温度和电压)对限域结构中水浸润性的调控,同时阐述了低维限域结构中的液体输运;对二维纳米通道中的分子动力学模拟、液体浸润性以及液体输运进行了综述;讨论了纳米通道限域结构在物质输运、纳米限域化学反应和纳米材料制备等领域的应用;对低维限域结构中水与物质输运面临的挑战和前景进行了展望.
生物分子结合水的结构与动力学研究进展
叶树集, 李传召, 张佳慧, 谈军军, 罗毅
2019, 68 (1): 013101. doi: 10.7498/aps.68.20181273
摘要 +
生物结合水在维护生物大分子的结构、稳定性以及调控动力学性质和生理功能等方面起着决定性的作用.从分子水平上理解生物结合水分子的结构与性质及其影响生物结构和功能的本质与规律,是揭示生物大分子生理功能机理的关键.目前生物结合水的结构与动力学相关研究尚处于初步阶段.本文从三个方面介绍当前生物结合水的相关研究及其进展:首先介绍结合水对蛋白质折叠、质子给予与迁移、配体结合与药物设计以及变构效应等生物结构和功能的影响;然后介绍生物分子周围的水分子结构研究情况;最后从时间尺度、动力学属性、生物分子与水分子之间的动力学耦合作用、蛋白质表面结合水次扩散运动等角度介绍生物分子水合动力学的研究进展,并归纳出一些目前尚待进一步解决的科学问题.
基于加气水滴灌的土壤环境调节机理研究
杨海军, 仵峰, 方海平, 胡钧, 侯铮迟
2019, 68 (1): 019201. doi: 10.7498/aps.68.20181357
摘要 +
土壤是粮食安全、水安全和更广泛的生态系统安全的基础.我国水资源贫乏,且分布不均.传统农业采用的大水漫灌方式用水量大,还会破坏土壤团粒结构,造成土壤板结、土地盐碱化等土壤退化现象.地下滴灌技术节水效果明显,水的有效利用率超过95%;但也会在一定程度上破坏土壤结构.研究表明,使用加气水滴灌不但能增加作物产量,还能提高作物品质.本文综述了滴头埋深、加气滴灌频率、灌水量、植物生育期、加气方式与设备等几个因素对加气水滴灌效果的影响,总结了加气水滴灌对土壤水环境、气环境、微生物环境、营养环境和矿物环境的影响规律,并提出加气水滴灌对土壤环境的调节机理.加气水滴灌会改变土壤结构,其水、气、微生物、营养和矿物质等土壤环境的变化一方面是土壤结构变化的结果,另一方面又会促进土壤结构的变化.同步辐射X射线计算机断层扫描的原位实验结果也证实了加气水滴灌能改变土壤的结构.
水合物研制、结构与性能及其在能源环境中的应用
朱金龙, 赵予生, 靳常青
2019, 68 (1): 018203. doi: 10.7498/aps.68.20181639
摘要 +
天然气水合物是与能源和环境相关的物质,可以进行甲烷等能源气体的存储和提取,也可以用于对二氧化碳等废气的封存.天然气水合物主要分为三种结构:sI,sⅡ和sH,在本文中对其稳定性、水笼类型和大小以及可俘获气体进行了论述.中子衍射技术是研究水合物的重要手段之一,有着独特的优势.如中子的穿透性可以研究在高压状态下压力腔体内的大块样品;中子对于轻元素的敏感性可以很好地确定水合物当中的碳、氢、氧元素.通过中子衍射和非弹散射可以得到水合物中H/D原子的位置、各向异性振动因子、不同温度压力下的客体分子的水笼占据率、客体分子在水笼中的无序分布、原子核密度分布(通过最大熵方法);通过时间分辨中子,可以检测水合物形成及分解过程的热力学和动力学过程.而利用非弹中子可以得到气体分子平移和旋转振动模式以及分子的量子态转变.通过二氧化碳气体注入对天然气水合物的开采可以实现能源气体甲烷的开采和废气二氧化碳的水合物封存,在减小地质灾害和开采成本上有着独特的优势.
表/界面水的扫描探针技术研究进展
尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖
2019, 68 (1): 016802. doi: 10.7498/aps.68.20182201
摘要 +
表面和界面水在自然界、人们的日常生活以及现代科技中无处不在.它在物理、化学、环境学、材料学、生物学、地质学等诸多基础学科和应用领域起到至关重要的作用.因此,表面和界面水的功能与特性的研究,是水基础科学的一项核心任务.然而,由于水分子之间氢键相互作用的复杂性,及其与水-固界面相互作用的竞争,使得表(界)面水对于局域环境的影响非常敏感,往往需要深入到分子层次研究其微观结构和动力学过程.近年来,新型扫描探针技术的发展使得人们可以在单分子甚至亚分子尺度上对表(界)面水展开细致的实空间研究.本文着重介绍几种代表性的扫描探针技术及其在表(界)面水体系中的应用,包括:超高真空扫描隧道显微术、单分子振动谱技术、电化学扫描隧道显微术和非接触式原子力显微术.此外,本文还将对表(界)面水扫描探针技术研究面临的挑战和未来发展方向进行了展望.