Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-analytical solution of the dry baroclinic Lagrange primitive equation and numerical experiment of a non-linear density current

Hao Shi-Feng Lou Mao-Yuan Yang Shi-Fang Li Chao Kong Zhao-Lin Qiu Wei

Semi-analytical solution of the dry baroclinic Lagrange primitive equation and numerical experiment of a non-linear density current

Hao Shi-Feng, Lou Mao-Yuan, Yang Shi-Fang, Li Chao, Kong Zhao-Lin, Qiu Wei
PDF
Get Citation
  • To solve atmospheric primitive equations, the finite difference approach would result in numerous problems, compared to the differential equations. Taking the semi-Lagrange model as an example, there exist two difficult problemsthe particle trajectory computation and the solutions of the Helmholtz equations. In this study, based on the substitution of atmosphere pressure, the atmospheric primitive equations are linearized within an integral time step, which are broadly seen as ordinary differential equations and can be derived as semi-analytical solutions (SASs). The variables of SASs are continuous functions of time and discretized in a special direction, so the gradient and divergence terms are solved by the difference method. Since the numerical solution of the SASs can be calculated via a highly precise numerical computational method of exponential matrixthe precise integration method, the numerical solution of SASs at any time in the future can be obtained via step-by-step integration procedure. For the SAS methodology, the pressure, as well as the wind vector and displacement, can be obtained without solving the Helmholtz formulations. Compared to the extrapolated method, the SAS is more reasonable as the displacements of the particle are solved via time integration. In order to test the validity of the algorithms, the SAS model is constructed and the same experiment of a non-linear density current as reported by Straka in 1993 is implemented, which contains non-linear dynamics, transient features and fine-scale structures of the fluid flow. The results of the experiment with 50 m spatial resolution show that the SAS model can capture the characters of generation and development process of the Kelvin-Helmholtz shear instability vortex; the structures of the perturbation potential temperature field are very close to the benchmark solutions given by Straka, as well as the structures of the simulated atmosphere pressure and wind field. To further test the convergence of the numerical solution of the SAS model, the 100 m spatial resolution experiment of the non-linear density current is also implemented for comparison. Although the results from both experiments are similar, the former one is better and the property of mass-energy conservation is comparatively reasonable, and furthermore, the SAS model has a convergent property in the numerical solutions. Therefore, the SAS method is a new tool with efficiency for solving the atmospheric primitive equations.
      Corresponding author: Hao Shi-Feng, shifenghao@aliyun.com
    • Funds: Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant No. GYHY201306010), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41405047), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012ZX07101-010).
    [1]

    Ji L R, Chen J B, Zhang D M 2005 Chin. J. Atmos. Sci. 29 122 (in Chinese) [纪立人, 陈嘉滨, 张道民 2005 大气科学 29 122]

    [2]

    Gu X Z, Zhang B 2008 Plateau Meteorol. 27 474 (in Chinese) [辜旭赞, 张兵 2008 高原气象 27 474]

    [3]

    Gu X Z, Zhang B 2008 Plateau Meteorol. 27 481 (in Chinese) [辜旭赞, 张兵 2008 高原气象 27 481]

    [4]

    Robert A 1982 J. Meteorol. Soc. Japan 60 319

    [5]

    Mcdonald A 1986 Mon. Wea. Rev. 114 824

    [6]

    Hortal M 2002 Q. J. R. Meteorol. Soc. 128 1671

    [7]

    Chen D H, Xue J S, Yang X S, Zhang H L, Shen X S, Hu J L, Wang Y, Ji L R, Chen J B 2008 Chin. Sci. Bull. 53 2396 (in Chinese) [陈德辉, 薛纪善, 杨学胜, 张红亮, 沈学顺, 胡江林, 王雨, 纪立人, 陈嘉滨 2008 科学通报 53 2396]

    [8]

    Staniforth A, White A, Wood N 2003 Q. J. R. Meteorol. Soc. 129 2065

    [9]

    Staniforth A, Wood N 2008 J. Comput. Phys. 227 345

    [10]

    Wood N, White A, Staniforth A 2010 Q. J. R. Meteorol. Soc. 136 507

    [11]

    Zhong W X, Zhu J P 1995 Appl. Math. Mech. 16 663 (in Chinese) [钟万勰, 朱建平 1995 应用数学和力学 16 663]

    [12]

    Zhong W X 1996 Acta Mech. Sin. 28 159 (in Chinese) [钟万勰 1996 力学学报 28 159]

    [13]

    Sun J Q, Qin M Z 2007 Math. Numer. Sin. 29 67 (in Chinese) [孙建强, 秦孟兆 2007 计算数学 29 67]

    [14]

    Fu M H, Lan L H, Lu K L, Zhang W Z 2012 Sci. Chin. : Phys. Mech. Astron. 42 185 (in Chinese) [富明慧, 蓝林华, 陆克浪, 张文志 2012 中国科学:物理学, 力学, 天文学 42 185]

    [15]

    Lv H X, Yu H J, Qiu C H 2001 Appl. Math. Mech. 22 151 (in Chinese) [吕和祥, 于洪洁, 裘春航 2001 应用数学和力学 22 151]

    [16]

    Lv H X, Cai Z Q, Qiu C H 2001 Chin. J. Appl. Mech. 18 34 (in Chinese) [吕和祥, 蔡志勤, 裘春航 2001 应用力学学报 18 34]

    [17]

    Fan J P, Tao H, Tan C Y 2006 Acta Mech. Solid Sin. 9 289

    [18]

    Tan S J, Gao Q, Zhong W X 2010 Chin. J. Comput. Mech. 27 752 (in Chinese) [谭述君, 高强, 钟万勰 2010 计算力学学报 27 752]

    [19]

    Wang R Q, Li L L, Li H J 2010 Chin. J. Geophys. 53 1875 (in Chinese) [王润秋, 李兰兰, 李会俭 2010 地球物理学报 53 1875]

    [20]

    Duan Y T, Hu T Y, Yao F C 2013 Appl. Geophys. 10 71

    [21]

    Han M J, Ke D M, Chi X L, Wang M, Wang B T 2013 Acta Phys. Sin. 62 098502(in Chinese) [韩名君, 柯导明, 迟晓丽, 王敏, 王保童 2013 物理学报 62 098502]

    [22]

    Shi B R 2010 Chin. Phys. B 19 65202

    [23]

    Fu M H, Zhang W Z 2011 Chin. J. Comput. Mech. 28 529 (in Chinese) [富明慧, 张文志 2011 计算力学学报 28 529]

    [24]

    Fu M H, Zhang W Z 2010 Chin. J. Appl. Mech. 27 688 (in Chinese) [富明慧, 张文志 2010 应用力学学报 27 688]

    [25]

    Zheng W, Xu H Z, Zhong M, Yuan M J 2009 Chin. Phys. B 193597

    [26]

    Liu F, Chao J P, Huang G, Feng L C 2011 Chin. Sci. Bull. 56 2727

    [27]

    Hao S F, Yang S F, Lou M Y 2014 Chin. J. Geophys. 57 2190 (in Chinese) [郝世峰, 杨诗芳, 楼茂园 2014 地球物理学报 57 2190]

    [28]

    Hao S F, Cui X P 2012 Acta Phys. Sin. 61 039204(in Chinese) [郝世峰, 崔晓鹏 2012 物理学报 61 039204]

    [29]

    Xu Q, Xue M, Droegemerier K K 1996 J. Atmos. Sci. 53 770

    [30]

    Xue M, Xu Q, Droegemerier K K 1997 J. Atmos. Sci. 54 1998

    [31]

    Yang X S, Hu J L, Chen D H, Zhang H L, Shen X S, Chen J B 2008 Chin. Sci. Bull. 53 2418 (in Chinese) [杨学胜, 胡江林, 陈德辉, 张红亮, 沈学顺, 陈嘉滨, 纪立人 2008 科学通报 53 2418]

    [32]

    Straka J M, Wilhelmson R B, Wicker L J, Anderson J R, Droegemerier K K 1993 Int. J. Num. Methods Fluids 17 1

  • [1]

    Ji L R, Chen J B, Zhang D M 2005 Chin. J. Atmos. Sci. 29 122 (in Chinese) [纪立人, 陈嘉滨, 张道民 2005 大气科学 29 122]

    [2]

    Gu X Z, Zhang B 2008 Plateau Meteorol. 27 474 (in Chinese) [辜旭赞, 张兵 2008 高原气象 27 474]

    [3]

    Gu X Z, Zhang B 2008 Plateau Meteorol. 27 481 (in Chinese) [辜旭赞, 张兵 2008 高原气象 27 481]

    [4]

    Robert A 1982 J. Meteorol. Soc. Japan 60 319

    [5]

    Mcdonald A 1986 Mon. Wea. Rev. 114 824

    [6]

    Hortal M 2002 Q. J. R. Meteorol. Soc. 128 1671

    [7]

    Chen D H, Xue J S, Yang X S, Zhang H L, Shen X S, Hu J L, Wang Y, Ji L R, Chen J B 2008 Chin. Sci. Bull. 53 2396 (in Chinese) [陈德辉, 薛纪善, 杨学胜, 张红亮, 沈学顺, 胡江林, 王雨, 纪立人, 陈嘉滨 2008 科学通报 53 2396]

    [8]

    Staniforth A, White A, Wood N 2003 Q. J. R. Meteorol. Soc. 129 2065

    [9]

    Staniforth A, Wood N 2008 J. Comput. Phys. 227 345

    [10]

    Wood N, White A, Staniforth A 2010 Q. J. R. Meteorol. Soc. 136 507

    [11]

    Zhong W X, Zhu J P 1995 Appl. Math. Mech. 16 663 (in Chinese) [钟万勰, 朱建平 1995 应用数学和力学 16 663]

    [12]

    Zhong W X 1996 Acta Mech. Sin. 28 159 (in Chinese) [钟万勰 1996 力学学报 28 159]

    [13]

    Sun J Q, Qin M Z 2007 Math. Numer. Sin. 29 67 (in Chinese) [孙建强, 秦孟兆 2007 计算数学 29 67]

    [14]

    Fu M H, Lan L H, Lu K L, Zhang W Z 2012 Sci. Chin. : Phys. Mech. Astron. 42 185 (in Chinese) [富明慧, 蓝林华, 陆克浪, 张文志 2012 中国科学:物理学, 力学, 天文学 42 185]

    [15]

    Lv H X, Yu H J, Qiu C H 2001 Appl. Math. Mech. 22 151 (in Chinese) [吕和祥, 于洪洁, 裘春航 2001 应用数学和力学 22 151]

    [16]

    Lv H X, Cai Z Q, Qiu C H 2001 Chin. J. Appl. Mech. 18 34 (in Chinese) [吕和祥, 蔡志勤, 裘春航 2001 应用力学学报 18 34]

    [17]

    Fan J P, Tao H, Tan C Y 2006 Acta Mech. Solid Sin. 9 289

    [18]

    Tan S J, Gao Q, Zhong W X 2010 Chin. J. Comput. Mech. 27 752 (in Chinese) [谭述君, 高强, 钟万勰 2010 计算力学学报 27 752]

    [19]

    Wang R Q, Li L L, Li H J 2010 Chin. J. Geophys. 53 1875 (in Chinese) [王润秋, 李兰兰, 李会俭 2010 地球物理学报 53 1875]

    [20]

    Duan Y T, Hu T Y, Yao F C 2013 Appl. Geophys. 10 71

    [21]

    Han M J, Ke D M, Chi X L, Wang M, Wang B T 2013 Acta Phys. Sin. 62 098502(in Chinese) [韩名君, 柯导明, 迟晓丽, 王敏, 王保童 2013 物理学报 62 098502]

    [22]

    Shi B R 2010 Chin. Phys. B 19 65202

    [23]

    Fu M H, Zhang W Z 2011 Chin. J. Comput. Mech. 28 529 (in Chinese) [富明慧, 张文志 2011 计算力学学报 28 529]

    [24]

    Fu M H, Zhang W Z 2010 Chin. J. Appl. Mech. 27 688 (in Chinese) [富明慧, 张文志 2010 应用力学学报 27 688]

    [25]

    Zheng W, Xu H Z, Zhong M, Yuan M J 2009 Chin. Phys. B 193597

    [26]

    Liu F, Chao J P, Huang G, Feng L C 2011 Chin. Sci. Bull. 56 2727

    [27]

    Hao S F, Yang S F, Lou M Y 2014 Chin. J. Geophys. 57 2190 (in Chinese) [郝世峰, 杨诗芳, 楼茂园 2014 地球物理学报 57 2190]

    [28]

    Hao S F, Cui X P 2012 Acta Phys. Sin. 61 039204(in Chinese) [郝世峰, 崔晓鹏 2012 物理学报 61 039204]

    [29]

    Xu Q, Xue M, Droegemerier K K 1996 J. Atmos. Sci. 53 770

    [30]

    Xue M, Xu Q, Droegemerier K K 1997 J. Atmos. Sci. 54 1998

    [31]

    Yang X S, Hu J L, Chen D H, Zhang H L, Shen X S, Chen J B 2008 Chin. Sci. Bull. 53 2418 (in Chinese) [杨学胜, 胡江林, 陈德辉, 张红亮, 沈学顺, 陈嘉滨, 纪立人 2008 科学通报 53 2418]

    [32]

    Straka J M, Wilhelmson R B, Wicker L J, Anderson J R, Droegemerier K K 1993 Int. J. Num. Methods Fluids 17 1

  • [1] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [2] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [3] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [4] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
  • Citation:
Metrics
  • Abstract views:  458
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2015
  • Accepted Date:  11 May 2015
  • Published Online:  05 October 2015

Semi-analytical solution of the dry baroclinic Lagrange primitive equation and numerical experiment of a non-linear density current

    Corresponding author: Hao Shi-Feng, shifenghao@aliyun.com
  • 1. Zhejiang Meteorology Observatory, Hangzhou 310017, China
Fund Project:  Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant No. GYHY201306010), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41405047), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012ZX07101-010).

Abstract: To solve atmospheric primitive equations, the finite difference approach would result in numerous problems, compared to the differential equations. Taking the semi-Lagrange model as an example, there exist two difficult problemsthe particle trajectory computation and the solutions of the Helmholtz equations. In this study, based on the substitution of atmosphere pressure, the atmospheric primitive equations are linearized within an integral time step, which are broadly seen as ordinary differential equations and can be derived as semi-analytical solutions (SASs). The variables of SASs are continuous functions of time and discretized in a special direction, so the gradient and divergence terms are solved by the difference method. Since the numerical solution of the SASs can be calculated via a highly precise numerical computational method of exponential matrixthe precise integration method, the numerical solution of SASs at any time in the future can be obtained via step-by-step integration procedure. For the SAS methodology, the pressure, as well as the wind vector and displacement, can be obtained without solving the Helmholtz formulations. Compared to the extrapolated method, the SAS is more reasonable as the displacements of the particle are solved via time integration. In order to test the validity of the algorithms, the SAS model is constructed and the same experiment of a non-linear density current as reported by Straka in 1993 is implemented, which contains non-linear dynamics, transient features and fine-scale structures of the fluid flow. The results of the experiment with 50 m spatial resolution show that the SAS model can capture the characters of generation and development process of the Kelvin-Helmholtz shear instability vortex; the structures of the perturbation potential temperature field are very close to the benchmark solutions given by Straka, as well as the structures of the simulated atmosphere pressure and wind field. To further test the convergence of the numerical solution of the SAS model, the 100 m spatial resolution experiment of the non-linear density current is also implemented for comparison. Although the results from both experiments are similar, the former one is better and the property of mass-energy conservation is comparatively reasonable, and furthermore, the SAS model has a convergent property in the numerical solutions. Therefore, the SAS method is a new tool with efficiency for solving the atmospheric primitive equations.

Reference (32)

Catalog

    /

    返回文章
    返回