Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal

He Hui-Fang Chen Zhi-Quan

Citation:

Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal

He Hui-Fang, Chen Zhi-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bismuth telluride (Bi2Te3) and its alloys are regarded as the best thermoelectric materials available nowadays at room temperature and can be well prepared by using existing technology. In this paper, Bi2Te3 nanocrystals are prepared by hydrothermal method and then treated by a spark plasma sintering (SPS) process at five temperatures of 300, 350, 400, 450 and 500 ℃ each for 5 min under a pressure of 20 MPa. X-ray diffraction (XRD) and positron annihilation spectroscopy are used to study the microstructures of the samples after SPS treatment at different temperatures. According to the XRD patterns, the diffraction peaks of the as-grown powder are consistent with those indicated in the standard card for Bi2Te3, which confirms successful synthesis of Bi2Te3 powders. Scanning electron microscope images show that the particles of all the samples take on flake-like structures, and the particle sizes increase from about 100 nm to a few m with the sintering temperature increasing from 350 to 500 ℃. This suggests significant reorganization of nanograins in sintering process, and some grains are agglomerated into larger particles. However, the grain sizes estimated from the X-ray diffraction peaks show little change in all the samples sintered at temperatures between 300-500 ℃. And most of the grains have sizes around 30 nm. Positron lifetime spectra are measured for Bi2Te3 samples sintered at different temperatures. The measurements reveal vacancy defects existing in all the sintered samples. With the increase of sintering temperature, there appears no significant change in trapped positron lifetime (2). This suggests that the defect size has no change during sintering. However, intensity I2 decreases monotonically with increasing sintering temperature, which indicates the lowering of vacancy concentration. The average positron lifetime shows a monotonous decrease with increasing sintering temperature, which indicates the recovery of vacancy defects at higher sintering temperatures. The thermal conductivity of the sample increases from 0.3 Wm-1K-1 to about 2.4 Wm-1K-1 with the sintering temperature increasing from 300 to 500 ℃. Since the lattice thermal conductivity dominates the total thermal conductivity, it can be inferred that sintering at higher temperature leads to the increase of lattice thermal conductivity. According to the positron annihilation lifetime result, the vacancy defects in the interface region gradually recover after sintering at higher temperatures. This shows good correlation with the increase of lattice thermal conductivity, indicating that vacancy-type defects are effective phonon scattering centers for Bi2Te3.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275143, 11305117).
    [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

  • [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

  • [1] Zhao Yong-Sheng, Yan Feng-Yun, Liu Xue. Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr. Acta Physica Sinica, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [2] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [6] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [7] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [8] Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin. Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy. Acta Physica Sinica, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [9] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [10] Chen Dong-Ge, Tang Xin-Gui, Jia Zhen-Hua, Wu Jun-Bo, Xiong Hui-Fang. Dielectric spectroscopy of Al2O3-Y2O3-ZrO2 ternary composite ceramics. Acta Physica Sinica, 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [11] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [12] Xu Hong-Xia, Hao Ying-Ping, Han Rong-Dian, Weng Hui-Min, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation spectroscopy study on the Fe3O4 nanoparticle. Acta Physica Sinica, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [13] Xiong Tao, Zhang Jie, Chen Xiang-Lei, Ye Bang-Jiao, Du Huai-Jiang, Weng Hui-Min. Calculation of positron wave function in the single crystal solid. Acta Physica Sinica, 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [14] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [15] Xiong Tao, Gao Chuan-Bo, Chen Xiang-Lei, Zhou Xian-Yi, Weng Hui-Min, Cao Fang-Yu, Ye Bang-Jiao, Han Rong-Dian, Du Huai-Jiang. Positron study of carbon-Fe3O4 coaxial nanofibers. Acta Physica Sinica, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [16] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [17] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [18] Li Yang-Xian, Yang Shuai, Chen Gui-Feng, Ma Qiao-Yun, Niu Ping-Juan, Chen Dong-Feng, Li Hong-Tao, Wang Bao-Yi. Investigation of the acceptor and donor in fast neutron irradiated Czochralski s ilicon. Acta Physica Sinica, 2005, 54(4): 1783-1787. doi: 10.7498/aps.54.1783
    [19] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Chen Xian-Hui, Cao Lie-Zhao. Anomalous thermal conductivity enhancement in the mixed state of MgB2. Acta Physica Sinica, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [20] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
Metrics
  • Abstract views:  5049
  • PDF Downloads:  277
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2015
  • Accepted Date:  14 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回