Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering

Sun Xing Mo Guang Zhao Lin-Zhi Dai Lan-Hong Wu Zhong-Hua Jiang Min-Qiang

Citation:

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering

Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Amorphous alloys are the glassy solids that are formed through the glass transition of high-temperature melts. They therefore inherit the long-ranger disorders of melts and many quenched-in defects such as free volume. This inevitably leads to structural heterogeneity on a nanoscale that is believed to be as fertile sites for initiating relaxation and flow. However, due to limitations of spatiotemporal measurements, experimental characterization of the nanoscale structural heterogeneity in amorphous alloys has faced a great challenges. In this paper, an in-situ tensile testing setup with synchrotron small angle X-ray scattering is designed for a Zr-based (Vitreloy 1) amorphous alloy. By the small angle X-ray scattering, the structural heterogeneity of the Vitreloy 1 amorphous alloy can be described by the fluctuation of electron density. The small angle scattering images are recorded with the charge coupled device (CCD) detector, and then are azimuthally integrated into the one-dimensional scattering intensity curves using the FIT2D software. We apply the Porod law, Guinier law and Debye law to the obtained scattering intensity curves, and attempt to obtain the information about structural heterogeneity in the Vitreloy 1 amorphous alloy at different stress levels.The results indicate that the scattering intensity curve of the Vitreloy 1 amorphous alloy exhibits the positive deviation of Porod law. This observation proves that the amorphous alloy belongs to the non-ideal two-phase system, corresponding to the complicated spatial distribution between soft/liquid-like and hard/solid-like phases. According to the Porod's law, it is revealed that the diffuse interface exists between the two phases, associated with the density fluctuations in either of phases. Furthermore, we demonstrate that different scatterers coexist in the amorphous alloy and their characteristic sizes measured by the radius of gyration are mainly distributed between 0.8 nm and 1.6 nm. It deserves to note that the range of radii of gyration of scatterers are close to the equivalent sizes (1.3–1.9 nm) of shear transformation zones (STZs) for plastic flow in amorphous alloys. In addition, the shape of scatterer is far from a sphere, reminiscent of STZ activation regions of flat discs. It is therefore concluded that the scatterers with larger gyration radius correspond to the soft regions for the potential STZs, while those with smaller gyration radius correspond to the hard regions with lower free volume concentration. Finally, based on the correlation function defined by Debye, we analyze the correlation of electron density fluctuation between two arbitrary scatterers. The result indicates that the nanoscale scatterers in the amorphous alloy are strongly correlated only within a range of about 1 nm, which is consistent with the short-range ordered and long-range disordered structural features of the amorphous alloy. The image of the nanoscale heterogeneous structures characterized by the small angle X-ray scattering is almost not changed in the elastic deformation stage of the amorphous alloy. The present findings increase our understanding of the nanoscale structural heterogeneity in amorphous alloys, which is an important step to describe glass flow and relaxation.
      Corresponding author: Jiang Min-Qiang, mqjiang@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11522221, 11372315, 11472287), the Key Research Program of Frontiers Sciences, Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB22040303).
    [1]

    Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605

    [2]

    Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660

    [3]

    Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362

    [4]

    Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587

    [5]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [6]

    Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501

    [7]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [8]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190

    [9]

    Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37

    [10]

    Greer A L 1995 Science 267 1947

    [11]

    Johnson W L 1999 MRS Bull. 24 42

    [12]

    Spaepen F 1977 Acta Metall. 25 407

    [13]

    Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences

    [14]

    Argon A S 1979 Acta Metall. 27 47

    [15]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [16]

    Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72

    [17]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [18]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [19]

    Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376

    [20]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [21]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [22]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769

    [23]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [24]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [25]

    Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847

    [26]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [27]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [28]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [29]

    Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161

    [30]

    Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957

    [31]

    Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715

    [32]

    Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137

    [33]

    Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522

    [34]

    Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104

    [35]

    Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33

    [36]

    Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911

    [37]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [38]

    Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10

    [39]

    Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133

    [40]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [41]

    Guimer A, Fournet G 1955 (New York: John Wiley & Sons)

    [42]

    Porod G 1951 Colloid Polymer Sci. 124 83

    [43]

    Debye P, Bueche A M 1949 J. Appl. Phys. 20 518

    [44]

    Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679

    [45]

    Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128

    [46]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [47]

    Egami T 2011 Prog. Mater. Sci. 56 637

    [48]

    Li Z H 2013 Chin. Phys. C 37 110

    [49]

    Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79

    [50]

    Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111

    [51]

    Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067

    [52]

    Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057

    [53]

    Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]

  • [1]

    Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605

    [2]

    Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660

    [3]

    Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362

    [4]

    Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587

    [5]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [6]

    Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501

    [7]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [8]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190

    [9]

    Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37

    [10]

    Greer A L 1995 Science 267 1947

    [11]

    Johnson W L 1999 MRS Bull. 24 42

    [12]

    Spaepen F 1977 Acta Metall. 25 407

    [13]

    Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences

    [14]

    Argon A S 1979 Acta Metall. 27 47

    [15]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [16]

    Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72

    [17]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [18]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [19]

    Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376

    [20]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [21]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [22]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769

    [23]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [24]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [25]

    Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847

    [26]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [27]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [28]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [29]

    Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161

    [30]

    Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957

    [31]

    Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715

    [32]

    Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137

    [33]

    Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522

    [34]

    Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104

    [35]

    Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33

    [36]

    Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911

    [37]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [38]

    Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10

    [39]

    Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133

    [40]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [41]

    Guimer A, Fournet G 1955 (New York: John Wiley & Sons)

    [42]

    Porod G 1951 Colloid Polymer Sci. 124 83

    [43]

    Debye P, Bueche A M 1949 J. Appl. Phys. 20 518

    [44]

    Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679

    [45]

    Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128

    [46]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [47]

    Egami T 2011 Prog. Mater. Sci. 56 637

    [48]

    Li Z H 2013 Chin. Phys. C 37 110

    [49]

    Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79

    [50]

    Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111

    [51]

    Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067

    [52]

    Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057

    [53]

    Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]

  • [1] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] Yin Hao, Song Tong, Peng Xiong-Gang, Zhang Peng, Yu Run-Sheng, Chen Zhe, Cao Xing-Zhong, Wang Bao-Yi. Small angle X-ray scattering and positron annihilation spectroscopy of polyethyleneimine functionalized ordered mesoporous silica SBA-15 microstructure. Acta Physica Sinica, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [3] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [4] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [5] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [6] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [8] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [9] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [10] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [11] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [12] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [13] Wang Hai-Long, Wang Xiu-Xi, Wang Yu, Liang Hai-Yi. Molecular dynamics simulation of deformation-induced crystallization mechanism in amorphous Ti3Al alloy. Acta Physica Sinica, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [14] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [15] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [16] Xia Qing-Zhong, Chen Bo, Zeng Gui-Yu, Luo Sun-Huo, Dong Hai-Shan, Rong Li-Xia, Dong Bao-Zhong. Experimental investigation of insensitive explosive C6H6N6O6 by small angle x-ray scattering technique. Acta Physica Sinica, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [17] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [18] Zhao Hui, Du Zhi-Wei, Zhou Tie-Tao, Liu Pei-Ying, Dong Bao-Zhong, Chen Chang-Qi. Small angle x-ray scattering study on microstructure evolution of the aging process of Al-Zn-Mg-Cu-Li alloy. Acta Physica Sinica, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [19] Xu Yao, Li Zhi-Hong, Fan Wen-Hao, Wu Dong, Sun Yu-Han, Wang Jun, Dong Bao-Zhong. Pore structures of methyl-modified silica xerogels by small angle x-ray scattering. Acta Physica Sinica, 2003, 52(3): 635-640. doi: 10.7498/aps.52.635
    [20] Zhao Hui, Dong Bao-Zhong, Guo Mei-Fang, Wang Liang-Shi, Qiao Jin-Liang. . Acta Physica Sinica, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
Metrics
  • Abstract views:  6230
  • PDF Downloads:  702
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2017
  • Accepted Date:  26 July 2017
  • Published Online:  05 September 2017

/

返回文章
返回