Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The method of suppressing spatial filter output noise-power gain for cardiac electrical activity imaging

Zhou Da-Fang Zhang Shu-Lin Jiang Shi-Qin

Citation:

The method of suppressing spatial filter output noise-power gain for cardiac electrical activity imaging

Zhou Da-Fang, Zhang Shu-Lin, Jiang Shi-Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For non-invasive imaging of cardiac electrical activity using magnetocardiogram (MCG) data measured on human body surface, a key problem that needs to be solved is to enhance the spatial resolution of reconstructing distributed current source dipole moment strength in MCG imaging. In this paper, a beamforming method of suppressing spatial filter output noise-power gain (SONG) is proposed based on the minimum variance beamforming (MVB). The purpose is to improve the resolution of the distributed source dipole moment strength reconstruction, i.e., the ability to resolve the source for distributed current source spatial spectrum estimation, in order to enhance the resolution of the cardiac electrical activity magnetic imaging. The method offers a new spatial filter weight matrix by using a low-trace positively-semidefinite matrix that will affect the spatial filter output power, on the premise that the influence of noise spatial spectrum of spatial filter on the estimation of current source spatial spectrum has been constrained by the noise spatial spectrum intensity normalization. The positively-semidefinite matrix is specially constructed to satisfy the condition that the eigenvalue is not greater than 1 and the trace of the matrix is lower than its order, so that it can be used to constrain the spatial filter output noise-power gain for improving the robustness to noise of the source spatial spectrum estimation. In addition, a classical model of the horizontally layered conductor is used as the heart-torso model to calculate the lead-field matrix that needs to be used in source spatial spectrum estimation. The results obtained in this study are as follows. For validating the proposed method, a theoretical analysis and simulation tests of the current source reconstruction are performed, where the SONG and MVB methods are compared and a parameter of the signal-to-noise ratio is considered according to the realistic MCG data. In this paper we also give the cardiac electrical activity imaging of 36-channel cardiac magnetic field data of single-cycle from two healthy people, where a heart profile from the magnetic resonance imaging is used as a reference and adjusted to the MCG measurement system. The results show that the SONG method has ability to better resolve the current source and can observe the significant electrophysiological characteristics such as the strong electrical activity in the ventricles of the healthy people at the time of Rpeak. In summary, our proposed method can improve the visual effect of the cardiac electrical activity imaging, when the signal-to-noise ratio of the single-cycle cardiac magnetic signal is not lower than 10 dB. Therefore, this method of measuring the non-invasively imaging cardiac electrical activity is a promising one and helpful for relevant medical research and applications.
      Corresponding author: Jiang Shi-Qin, sqjiang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60771030), the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308), the Shanghai Foundation for Development of Science and Technology, China (Grant No. 08JC1421800), and the Open Project of State Key Laboratory of Function Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (Grant No. SKL2013010).
    [1]

    van Veen B, van Drongelen W, Yuchtman M, Suzuki A 1997 IEEE Trans. Biomed. Eng. 44 867

    [2]

    Sekihara K, Nagarajan S S 2005 Modeling and Imaging of Bioelectrical Activity: Principles and Applications (New York: Kluwer Academic/Plenum Publishers) p213

    [3]

    Gross J, Ioannides A A 1999 Phys. Med. Biol. 44 2081

    [4]

    Sekihara K, Sahani M, Nagarajan S S 2005 NeuroImage 25 1056

    [5]

    Brookes M J, Vrba J, Robinson S E, Stevenson C M, Peters A M, Barnes G R, Hillebrand A, Morris P G 2008 NeuroImage 39 1788

    [6]

    Kumihashi I, Sekihara K 2010 IEEE Trans. Biomed. Eng. 57 1358

    [7]

    Ha T, Kim K, Lim S, Yu K K, Kwon H 2015 IEEE Trans. Biomed. Eng. 62 60

    [8]

    Kobayashi K, Uchikawa Y, Nakai K, Yoshizawa M 2004 IEEE Trans. Magn. 40 2970

    [9]

    Kim K, Lee Y, Kwon H, Kim J, Bae J 2006 Comput. Biol. Med. 36 253

    [10]

    Kim K, Kim D, Shim E, Lee Y, Kwon H, Park Y 2007 Proceedings of the Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart the International Conference on Functional Biomedical Imaging Hangzhou, China, October 1214, 2007 p316

    [11]

    van Leeuwen P, Hailer B, Lange S, Klein A, Geue D, Seybold K, Poplutz C, Grnemeyer D 2008 Phys. Med. Biol. 53 2291

    [12]

    Zhang S L 2011 Ph. D. Dissertation (Shanghai: Graduate University of Chinese Academy of Sciences) (in Chinese) [张树林 2011 博士学位论文 (上海: 中国科学院研究 生院)]

    [13]

    Tripp J H 1983 Biomagnetism: An Interdisciplinary Approach (New York: Springer) p101

    [14]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [15]

    Wang W Y, Jiang S Q, Zhou D F, Zhu J C, Yan Y R, Quan W W 2014 Acta Phys. Sin. 63 248702 (in Chinese) [王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇 2014 物 理学报 63 248702]

    [16]

    Zhou D F, Jiang S Q, Zhu J C, Zhao C, Yan Y R, Grnemeyer D, van Leeuwen P 2015 Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Milan, Italy, August 2529, 2015 p4479

    [17]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (New York: Oxford University Press) p165

    [18]

    Durrer D, van Dam R T, Freud G E, Janse M J, Meijler F L, Arzbaecher R C 1970 Circulation 41 899

    [19]

    Pesola K, Nenonen J 2000 Proceedings of the 12th International Conference on Biomagnetism Espoo, Finland, August 1317, 2000 p835

    [20]

    Nenonen J, Pesola K, Hnninen H, Lauerma K, Takala P, Mkel T, Mkijrvi M, Knuuti J, Toivonen L, Katila T 2001 J. Electrocardiol. 34 37

  • [1]

    van Veen B, van Drongelen W, Yuchtman M, Suzuki A 1997 IEEE Trans. Biomed. Eng. 44 867

    [2]

    Sekihara K, Nagarajan S S 2005 Modeling and Imaging of Bioelectrical Activity: Principles and Applications (New York: Kluwer Academic/Plenum Publishers) p213

    [3]

    Gross J, Ioannides A A 1999 Phys. Med. Biol. 44 2081

    [4]

    Sekihara K, Sahani M, Nagarajan S S 2005 NeuroImage 25 1056

    [5]

    Brookes M J, Vrba J, Robinson S E, Stevenson C M, Peters A M, Barnes G R, Hillebrand A, Morris P G 2008 NeuroImage 39 1788

    [6]

    Kumihashi I, Sekihara K 2010 IEEE Trans. Biomed. Eng. 57 1358

    [7]

    Ha T, Kim K, Lim S, Yu K K, Kwon H 2015 IEEE Trans. Biomed. Eng. 62 60

    [8]

    Kobayashi K, Uchikawa Y, Nakai K, Yoshizawa M 2004 IEEE Trans. Magn. 40 2970

    [9]

    Kim K, Lee Y, Kwon H, Kim J, Bae J 2006 Comput. Biol. Med. 36 253

    [10]

    Kim K, Kim D, Shim E, Lee Y, Kwon H, Park Y 2007 Proceedings of the Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart the International Conference on Functional Biomedical Imaging Hangzhou, China, October 1214, 2007 p316

    [11]

    van Leeuwen P, Hailer B, Lange S, Klein A, Geue D, Seybold K, Poplutz C, Grnemeyer D 2008 Phys. Med. Biol. 53 2291

    [12]

    Zhang S L 2011 Ph. D. Dissertation (Shanghai: Graduate University of Chinese Academy of Sciences) (in Chinese) [张树林 2011 博士学位论文 (上海: 中国科学院研究 生院)]

    [13]

    Tripp J H 1983 Biomagnetism: An Interdisciplinary Approach (New York: Springer) p101

    [14]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [15]

    Wang W Y, Jiang S Q, Zhou D F, Zhu J C, Yan Y R, Quan W W 2014 Acta Phys. Sin. 63 248702 (in Chinese) [王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇 2014 物 理学报 63 248702]

    [16]

    Zhou D F, Jiang S Q, Zhu J C, Zhao C, Yan Y R, Grnemeyer D, van Leeuwen P 2015 Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Milan, Italy, August 2529, 2015 p4479

    [17]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (New York: Oxford University Press) p165

    [18]

    Durrer D, van Dam R T, Freud G E, Janse M J, Meijler F L, Arzbaecher R C 1970 Circulation 41 899

    [19]

    Pesola K, Nenonen J 2000 Proceedings of the 12th International Conference on Biomagnetism Espoo, Finland, August 1317, 2000 p835

    [20]

    Nenonen J, Pesola K, Hnninen H, Lauerma K, Takala P, Mkel T, Mkijrvi M, Knuuti J, Toivonen L, Katila T 2001 J. Electrocardiol. 34 37

  • [1] Liu Jin-Pin, Wang Bing-Zhong, Chen Chuan-Sheng, Wang Ren. Inverse design of microwave waveguide devices based on deep physics-informed neural networks. Acta Physica Sinica, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [2] Zhou Da-Fang, Jiang Shi-Qin, Zhao Chen, Peter van Leeuwen. Current source reconstructing and magnetic imaging of cardiac electrical activity during P-wave. Acta Physica Sinica, 2019, 68(13): 138701. doi: 10.7498/aps.68.20190005
    [3] Huang Wei-Li. Inverse problem of Mei symmetry for a general holonomic system. Acta Physica Sinica, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202
    [4] Zhang Hai-Yang, Huang Yong-Ming, Yang Lü-Xi. Beamforming design based on energy harvesting proportional fairness in a simultaneous wireless information and power transfer system. Acta Physica Sinica, 2015, 64(2): 028402. doi: 10.7498/aps.64.028402
    [5] Zhu Jun-Jie, Jiang Shi-Qin, Wang Wei-Yuan, Zhao Chen, Wang Yong-Liang, Li Wen-Sheng, Quan Wei-Wei. Research and application of multi-chamber heart magnetic field model. Acta Physica Sinica, 2014, 63(5): 058703. doi: 10.7498/aps.63.058703
    [6] Wang Wei-Yuan, Jiang Shi-Qin, Zhou Da-Fang, Zhu Jia-Chen, Yan Yu-Rui, Quan Wei-Wei. Magnetocardiac signal analysis based on multiple time windows beamformer method. Acta Physica Sinica, 2014, 63(24): 248702. doi: 10.7498/aps.63.248702
    [7] Zhao Chen, Jiang Shi-Qin, Shi Ming-Wei, Zhu Jun-Jie. Equivalent source reconstruction in inhomogeneous electromagnetic media. Acta Physica Sinica, 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [8] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [9] Wang Wei-Yuan, Zhao Chen, Lin Yu-Zhang, Zhang Shu-Lin, Xie Xiao-Ming, Jiang Shi-Qin. Distributed current source reconstruction of magnetocadiography and its accuracy analysis. Acta Physica Sinica, 2013, 62(14): 148703. doi: 10.7498/aps.62.148703
    [10] Bing Lu, Wang Wei-Yuan, Wang Yong-Liang, Jiang Shi-Qin. MCG source reconstruction based on greedy sparse method. Acta Physica Sinica, 2013, 62(11): 118703. doi: 10.7498/aps.62.118703
    [11] Ding Guang-Tao. The families of Lagrangians of a Painleve equation. Acta Physica Sinica, 2012, 61(11): 110202. doi: 10.7498/aps.61.110202
    [12] Ding Guang-Tao. A new approach to the construction of Lagrangians and Hamiltonians for one-dimensional dissipative systems with variable coefficients. Acta Physica Sinica, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [13] Ding Guang-Tao. A study on the Lagrangian image of the Birkhoffian representations. Acta Physica Sinica, 2010, 59(1): 15-19. doi: 10.7498/aps.59.15
    [14] Ding Guang-Tao. New kind of inverse problems of Noether’s theory for Hamiltonian systems. Acta Physica Sinica, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [15] Zeng Shu-Guang, Zhang Bin. Inverse problem of optical parametric chirped pulse amplification. Acta Physica Sinica, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [16] Chu Xiao-Liang, Zhang Bin, Cai Bang-Wei, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Yuan Xiao-Dong, Zeng Xiao-Ming, Liu Lan-Qin, Wang Xiao, Wang Xiao-Dong, Zhou Kai-Nan, Guo Yi. Study of the multipass amplification of the chirped pulse and its inverse problem. Acta Physica Sinica, 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [17] Liu Xin-Yuan, Xie Bai-Qing, Dai Yuan-Dong, Wang Fu-Ren, Li Zhuang-Zhi, Ma Ping, Xie Fei-Xiang, Yang Tao, Nie Rui-Juan. Adaptive noise cancellation for SQUID-based magnetocardiogram. Acta Physica Sinica, 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [18] Yu Fei, Chen Xin-Zhao, Li Wei-Bing, Chen Jian. Investigation on holographic reconstruction of sound field using wave superposition approach. Acta Physica Sinica, 2004, 53(8): 2607-2613. doi: 10.7498/aps.53.2607
    [19] Zhao Li , Chen Geng-Hua, Zhang Li-Hua, Huang Xu-Guang, Zhai Guang-Jie, Li Jun-Wen, Tang Yu-Lin, Feng Ji. Applications of improved complementary pair adaptive noise cancellation to MCG analysis*. Acta Physica Sinica, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [20] Zhu Hong-Yi, Shen Jian-Qi, Li Jun. A new search method to solve the magnetoencephalography inverse problem. Acta Physica Sinica, 2004, 53(3): 947-951. doi: 10.7498/aps.53.947
Metrics
  • Abstract views:  4747
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2018
  • Accepted Date:  08 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回