搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多腔体心脏磁场模型的研究与应用

朱俊杰 蒋式勤 王伟远 赵晨 王永良 李文生 权薇薇

多腔体心脏磁场模型的研究与应用

朱俊杰, 蒋式勤, 王伟远, 赵晨, 王永良, 李文生, 权薇薇
PDF
导出引用
导出核心图
  • 利用核磁共振图像(MRI)中提取的人体和心脏边界,根据边界元方法(BEM)建立了一个考虑左、右心房和心室的多腔体心脏磁场模型. 分析了用该模型得到的36通道心脏磁场数据和特定时刻的磁场图. 并在此基础上,研究了完全性右束支传导阻滞(CRBBB)和完全性左束支传导阻滞(CLBBB)病人ST-T段的心脏电活动. 结果显示,用移动单电流偶极子模拟的单束支电兴奋传导所产生的磁场图与用超导量子干涉器(SQUID)测量的CRBBB/CLBBB病人数据绘制的心脏复极时的心磁图(MCG)十分相似. 结果表明,该多腔体心脏BEM模型可用于CLBBB/CRBBB病人心脏磁场逆问题的研究. 此外,文中给出了两个评价指标:测量平面上多腔体与单腔体的心脏磁场强度极大值之比,以及两种模型的36个测量点上磁场强度均方根之比. 分析表明,多腔体心脏模型更贴近人体心脏的实际情况. 该模型中心脏组织电导率参数的取值,以及等效电流偶极子的位置和个数决定了磁场的强度和分布.
    • 基金项目: 国家自然科学基金(批准号:60771030)、国家高技术研究发展计划(批准号:2008AA02Z308)、 上海市重点基础研究发展计划(批准号:08JC1421800)、上海市重点学科建设项目(批准号:B004)、信息功能材料国家重点实验室(中国科学院上海微系统与信息技术研究所)开放课题和上海市医学图像处理与计算机辅助手术重点实验室开放课题(批准号:13DZ2272200-2)资助的课题.
    [1]

    Gulrajani R M, Mailloux G E 1983 Circulation Research 52 45

    [2]

    Plonsey R 1999 Bioelectric phenomena (Wiley Online Library)

    [3]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields (USA: Oxford University Press) pp187-188

    [4]

    Geselowitz D B 1970 IEEE Transactions on Magnetics 6 346

    [5]

    Geselowitz D B, Miller W I 1973 IEEE Transactions on Magnetics 9 392

    [6]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [7]

    Nenonen J, Katila T, Leinio M, Montonen J, Makijarvi M, Siltanen P 1991 IEEE Transactions on Biomedical Engineering 38 648

    [8]

    Czapski P, Ramon C, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K 1998 IEEE Transactions on Biomedical Engineering 45 1313

    [9]

    Ramon C, Czapski P, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K, Nelson J A 1998 IEEE Transactions on Biomedical Engineering 45 1323

    [10]

    Fischer G, Tilg B, Wach P, Lafer G, Rucker W 1998 Computer Methods and Programs in Biomedicine 55 99

    [11]

    Purcell C J, Stroink G, Horacek B M 1998 IEEE Transactions on Biomedical Engineering 35 671

    [12]

    Haueisen J, Schreiber J, Brauer H, Knosche T R 2002 IEEE Transactions on magnetics 38 1045

    [13]

    Stenroos M, Mä ntynen V, Nenonen J 2007 Computer Methods and Programs in Biomedicine 88 256

    [14]

    Kaufman W, Johnston F D 1943 American Heart Journal 26 42

    [15]

    Gabriel S, Lau R W, Gabriel C 1996 Phys. Med. Biol. 41 2271

    [16]

    Burger H C, van Milaan J B 1943 Acta Medica Scandinavica 114 584

    [17]

    Rush S, Abildskov J A, Mcfee R 1963 Circulation Research 12 40

    [18]

    Keller D U J, Weber F M, Seemann G, Dossel O 2010 IEEE Transactions on Biomedical Engineering 57 1568

    [19]

    Czapski P, Ramon C, Huntsman L L, Bardy G H, Kim Y 1996 Phys. Med. Biol. 41 1247

    [20]

    Czapski P, Ramon C, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K 1998 IEEE Transactions on Biomedical Engineering 45 1313

    [21]

    Kaufman W, Johnston F D 1943 American Heart Journal 26 42

    [22]

    Schwan H P, Kay C F 1956 Circulation Research 4 664

    [23]

    Geselowitz D B 1967 Biophysical Journal 7 1

    [24]

    Vladimirov V S 1971 Equations of Mathematical Physics (New York: Marcel Dekker) pp302-305

    [25]

    Finlayson B A, Scriven L E 1966 Applied Mechanics Reviews 19 735

    [26]

    Finlayson B A 1972 The method of weighted residuals and variational principles (Academic Press New York)

    [27]

    Wang W Y, Zhao C, Lin Y Z, Zhang S L, Xie X M, Jiang S Q 2013 Phys. Med. Sin. 62 128703 (in Chinese) [王伟远, 赵晨, 林玉章, 张树林, 谢晓明, 蒋式勤 2013 物理学报 62 128703]

    [28]

    Tang F K, Hua N, Lu H, Tang X Z, Wang Q, Ma P 2011 Chin. Phys. B 20 010702

  • [1]

    Gulrajani R M, Mailloux G E 1983 Circulation Research 52 45

    [2]

    Plonsey R 1999 Bioelectric phenomena (Wiley Online Library)

    [3]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields (USA: Oxford University Press) pp187-188

    [4]

    Geselowitz D B 1970 IEEE Transactions on Magnetics 6 346

    [5]

    Geselowitz D B, Miller W I 1973 IEEE Transactions on Magnetics 9 392

    [6]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [7]

    Nenonen J, Katila T, Leinio M, Montonen J, Makijarvi M, Siltanen P 1991 IEEE Transactions on Biomedical Engineering 38 648

    [8]

    Czapski P, Ramon C, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K 1998 IEEE Transactions on Biomedical Engineering 45 1313

    [9]

    Ramon C, Czapski P, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K, Nelson J A 1998 IEEE Transactions on Biomedical Engineering 45 1323

    [10]

    Fischer G, Tilg B, Wach P, Lafer G, Rucker W 1998 Computer Methods and Programs in Biomedicine 55 99

    [11]

    Purcell C J, Stroink G, Horacek B M 1998 IEEE Transactions on Biomedical Engineering 35 671

    [12]

    Haueisen J, Schreiber J, Brauer H, Knosche T R 2002 IEEE Transactions on magnetics 38 1045

    [13]

    Stenroos M, Mä ntynen V, Nenonen J 2007 Computer Methods and Programs in Biomedicine 88 256

    [14]

    Kaufman W, Johnston F D 1943 American Heart Journal 26 42

    [15]

    Gabriel S, Lau R W, Gabriel C 1996 Phys. Med. Biol. 41 2271

    [16]

    Burger H C, van Milaan J B 1943 Acta Medica Scandinavica 114 584

    [17]

    Rush S, Abildskov J A, Mcfee R 1963 Circulation Research 12 40

    [18]

    Keller D U J, Weber F M, Seemann G, Dossel O 2010 IEEE Transactions on Biomedical Engineering 57 1568

    [19]

    Czapski P, Ramon C, Huntsman L L, Bardy G H, Kim Y 1996 Phys. Med. Biol. 41 1247

    [20]

    Czapski P, Ramon C, Haueisen J, Huntsman L L, Nowak H, Bardy G H, Leder U, Yongmin K 1998 IEEE Transactions on Biomedical Engineering 45 1313

    [21]

    Kaufman W, Johnston F D 1943 American Heart Journal 26 42

    [22]

    Schwan H P, Kay C F 1956 Circulation Research 4 664

    [23]

    Geselowitz D B 1967 Biophysical Journal 7 1

    [24]

    Vladimirov V S 1971 Equations of Mathematical Physics (New York: Marcel Dekker) pp302-305

    [25]

    Finlayson B A, Scriven L E 1966 Applied Mechanics Reviews 19 735

    [26]

    Finlayson B A 1972 The method of weighted residuals and variational principles (Academic Press New York)

    [27]

    Wang W Y, Zhao C, Lin Y Z, Zhang S L, Xie X M, Jiang S Q 2013 Phys. Med. Sin. 62 128703 (in Chinese) [王伟远, 赵晨, 林玉章, 张树林, 谢晓明, 蒋式勤 2013 物理学报 62 128703]

    [28]

    Tang F K, Hua N, Lu H, Tang X Z, Wang Q, Ma P 2011 Chin. Phys. B 20 010702

  • [1] 周大方, 蒋式勤, 赵晨, Petervan Leeuwen. P波间期的心脏电流源重建及电活动磁成像. 物理学报, 2019, 68(13): 138701. doi: 10.7498/aps.68.20190005
    [2] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法. 物理学报, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [3] 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟, 刘新元, 谢柏青. 射频SQUID心磁图数据自适应滤波研究. 物理学报, 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [4] 邴璐, 王伟远, 王永良, 蒋式勤. 基于贪婪稀疏方法的心脏磁场源重构. 物理学报, 2013, 62(11): 118703. doi: 10.7498/aps.62.118703
    [5] 王伟远, 赵晨, 林玉章, 张树林, 谢晓明, 蒋式勤. 心脏磁场分布电流源重构及其精度分析 . 物理学报, 2013, 62(14): 148703. doi: 10.7498/aps.62.148703
    [6] 王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇. 基于多时窗波束形成器方法的心脏磁场信号分析. 物理学报, 2014, 63(24): 248702. doi: 10.7498/aps.63.248702
    [7] 陈赓华, 张利华, 黄旭光, 翟光杰, 李俊文, 汤玉林, 冯 稷, 赵 莉. 互补型自适应滤波器在心磁信号处理中的应用. 物理学报, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [8] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构. 物理学报, 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [9] 许炜炜, 白明珠, 林强, 胡正珲. 基于个性化三维心脏-躯干模型的心磁正问题. 物理学报, 2019, 68(17): 178702. doi: 10.7498/aps.68.20190387
    [10] 杨卓琴. 神经元电活动不同节律模式的几种变化过程. 物理学报, 2010, 59(8): 5319-5324. doi: 10.7498/aps.59.5319
    [11] 吴信谊, 马军, 谢振博. 离子通道的非均匀分布对环链神经元网络电活动的影响. 物理学报, 2013, 62(24): 240507. doi: 10.7498/aps.62.240507
    [12] 胡金秀, 高效伟. 变系数瞬态热传导问题边界元格式的特征正交分解降阶方法. 物理学报, 2016, 65(1): 014701. doi: 10.7498/aps.65.014701
    [13] 朱红毅, 李 军, 沈建其, 何赛灵. 利用脑磁图-多重信号分类算法求解真实头模型中磁源定位问题. 物理学报, 2003, 52(7): 1812-1817. doi: 10.7498/aps.52.1812
    [14] 徐世民, 张运海, 徐兴磊, 李洪奇. 量子算符的左逆右逆及其数学性质. 物理学报, 2010, 59(11): 7575-7580. doi: 10.7498/aps.59.7575
    [15] 李景德. 晶格振动声学支的边界耦合效应. 物理学报, 1987, 36(7): 1010-1018. doi: 10.7498/aps.36.1010
    [16] 李景德. 晶格振动声学支的边界耦合效应. 物理学报, 1987, 36(8): 1010-1018.
    [17] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [18] 金淇涛, 王江, 伊国胜, 李会艳, 邓斌, 魏熙乐, 车艳秋. 经颅磁刺激感应外电场作用下最小神经元模型放电起始动态机理分析. 物理学报, 2012, 61(11): 118701. doi: 10.7498/aps.61.118701
    [19] 彭 麟, 谭惠丽, 孔令江, 刘慕仁. 开放性边界条件下双车道元胞自动机交通流模型耦合效应研究. 物理学报, 2003, 52(12): 3007-3013. doi: 10.7498/aps.52.3007
    [20] 王延申. 开边界六顶角模型的边界关联函数. 物理学报, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
  • 引用本文:
    Citation:
计量
  • 文章访问数:  680
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 修回日期:  2013-12-20
  • 刊出日期:  2014-03-05

多腔体心脏磁场模型的研究与应用

  • 1. 同济大学电子与信息工程学院, 控制科学与控制工程系, 上海 201804;
  • 2. 中国科学院上海微系统与信息技术研究所, 上海 200050;
  • 3. 复旦大学上海医学院数字医学研究中心, 上海市医学图像处理与计算机辅助手术重点实验室, 上海 200032;
  • 4. 瑞金医院心内科, 上海交通大学医学院, 上海 200025
    基金项目: 

    国家自然科学基金(批准号:60771030)、国家高技术研究发展计划(批准号:2008AA02Z308)、 上海市重点基础研究发展计划(批准号:08JC1421800)、上海市重点学科建设项目(批准号:B004)、信息功能材料国家重点实验室(中国科学院上海微系统与信息技术研究所)开放课题和上海市医学图像处理与计算机辅助手术重点实验室开放课题(批准号:13DZ2272200-2)资助的课题.

摘要: 利用核磁共振图像(MRI)中提取的人体和心脏边界,根据边界元方法(BEM)建立了一个考虑左、右心房和心室的多腔体心脏磁场模型. 分析了用该模型得到的36通道心脏磁场数据和特定时刻的磁场图. 并在此基础上,研究了完全性右束支传导阻滞(CRBBB)和完全性左束支传导阻滞(CLBBB)病人ST-T段的心脏电活动. 结果显示,用移动单电流偶极子模拟的单束支电兴奋传导所产生的磁场图与用超导量子干涉器(SQUID)测量的CRBBB/CLBBB病人数据绘制的心脏复极时的心磁图(MCG)十分相似. 结果表明,该多腔体心脏BEM模型可用于CLBBB/CRBBB病人心脏磁场逆问题的研究. 此外,文中给出了两个评价指标:测量平面上多腔体与单腔体的心脏磁场强度极大值之比,以及两种模型的36个测量点上磁场强度均方根之比. 分析表明,多腔体心脏模型更贴近人体心脏的实际情况. 该模型中心脏组织电导率参数的取值,以及等效电流偶极子的位置和个数决定了磁场的强度和分布.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回