Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiferroic properties of exotic double perovskite A2BB' O6

Wu Mei-Xia Li Man-Rong

Citation:

Multiferroic properties of exotic double perovskite A2BB' O6

Wu Mei-Xia, Li Man-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiferroic material in which there co-exist at least two of the ferro-phases,namely ferroelectricity,(anti-) ferromagnetism,and ferroelasticity,has attracted considerable attention in recent years due to its intriguing physics and potential applications for advanced multifunctional devices.However,multiferroic materials are rare due to the contradictory requirements between electrical polarization and magnetism.So far,only several compounds have been reported to show above-room temperature multiferroics.Thus,it is essential to search for new materials.The two most significant strategies to obtain multiferroics are 1) to incorporate magnetic transition-metal ions into polar structures to obtain polar magnets,and 2) to introduce special magnetic structure to drive ferroelectricity (the so-called type-Ⅱ multiferroics).Exotic double perovskite-related oxide A2BB'O6 with small A-site cations is one of the most extensively studied multiferroic families in recent years. The small A-site cations give small perovskite tolerance factor (t),and mostly high-pressure synthesis is required to stabilize the exotic perovskite structure.The crystal structure of exotic A2BB' O6 oxides can crystallize into either the centrosymmetric alumina corundum (AL),ilmenite (IL),or distorted GdFeO3-type perovskite structure,or the polar LiNbO3(LN),Ni3TeO6(NTO),or ordered ilmenite (OIL) structure.The polar LN,NTO,and OIL structures can accommodate magnetic transition-metal ions at both the A and B/B'sites in octahedral coordination,giving enhanced magnetic interactions and thus robust magneto-electric effect and high spontaneous polarization as well (usually above 50 C/cm-2,more than twice that in the renown BaTiO3),examples include the LN-type Mn2FeNbO6,and Mn2FeTaO6,OIL-type Mn2FeMoO6,and NTO-type Mn2FeMoO6,Mn2FeWO6,and Mn2MnWO6.These polar magnets show potential multiferroic responses even above room temperature (e.g.,ferromagnetic ordering temperature up to 340 K in NTO-type Mn2FeMoO6) and magnetoelectric coupling effect as in Mn2MnWO6.Magnetoelectric coupling can also arise in centrosymmetric IL structure in the absence of helical spin structure,such as those that are observed in Mn2FeSbO6,which exhibits colinear ferrimagnetic spin arrangement but magnetostriction induced antiferroelectricity.The corundum derivatives (AL,LN,IL,OIL,and NTO) and perovskite phases are competitive,depending on the electron configuration and synthesis pressure,and usually higher pressure favors the formation of perovskite structure.Compared with polar magnets in the corundum family,the exotic double perovskite adopts distorted GdFeO3-type structure (P21/n) with eight-coordination of the A-sites.In some double perovskite materials,the electric polarization can be induced by the special magnetic order,such as the ⇈⇊ magnetic structure induced type-Ⅱ multiferroics exemplified by A2CoMnO6(A=Lu,Y,Yb,Lu).In this review paper,we first compare the structure features of conventional and exotic double perovskite A2BB'O6 derived from the simple ABO3 analog,then summarize the recent progress of multiferroics in exotic double perovskite family,such as the polar magnets with transition-metal (Mn and Ni) cations at the A sites,type-Ⅱ multiferroic Mn2FeSbO6,and A2CoMnO6(A=Lu,Y,Yb,Lu). Finally,the problems and prospection of multiferroics in exotic double perovskite A2BB'O6 are also discussed to give a reference for the future research.
      Corresponding author: Li Man-Rong, limanrong@mail.sysu.edu.cn
    • Funds: Project supported by One Thousand Youth Talents Program of China.
    [1]

    Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M, Zhang Z, Yao J, Gao X, Liu J 2016 ACS Nano 10 1025

    [2]

    Li H B, Lu N, Zhang Q, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156

    [3]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C, Long Y 2017 Adv. Mater. 29 1703435

    [4]

    Yu P, Chu Y, Ramesh R 2012 Phil. Trans. R. Soc. A 370 4856

    [5]

    Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M, Wu S, Lu X, Zeng M, Gao X, Dai J, Liu J 2015 Sci. Rep. 5 9680

    [6]

    Khomskii D 2009 Physics 2 20

    [7]

    Wang Y, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268

    [8]

    Caignaert V, Maignan A, Singh K, Simon C, Pralong V, Raveau B, Mitchell J F, Zheng H, Huq A, Chapon L C 2013 Phys. Rev. B 88 174403

    [9]

    Ghara S, Suard E, Fauth F, Tran T T, Halasyamani P S, Iyo A, Rodrg uez-Carvajal J, Sundaresan A 2017 Phys. Rev. B 95 224416

    [10]

    Chi Z H, Jin C Q 2007 Prog. Phys. 27 225 (in Chinese) [迟振华, 靳常青 2007 物理学进展 27 225]

    [11]

    Wang K F, Liu J M, Wang Y 2009 Prog. Phys. 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [12]

    Sun Y 2014 Physics 43 166 (in Chinese) [孙阳 2014 物理 43 166]

    [13]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [14]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [15]

    Dong S, Xiang H J 2014 Physics 43 173 (in Chinese) [董帅, 向红军 2014 物理 43 173]

    [16]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [17]

    Smolenskii G A, Chupis I E 1982 Sov. Phys. Usp. 25 475

    [18]

    Bokov V, Mylnikova I, Smolenskii G 1962 Sov. Phys. Jetp-Ussr 15 447

    [19]

    Ivanov S A, Tellgren R, Rundlof H, Thomas N W, Ananta S 2000 J. Phys.: Condens. Matter 12 2393

    [20]

    Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U 2003 Science 299 1719

    [21]

    Dho J, Qi X, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445

    [22]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889

    [23]

    Nechache R, Cojocaru C V, Harnagea C, Nauenheim C, Nicklaus M, Ruediger A, Rosei F, Pignolet A 2011 Adv. Mater. 23 1724

    [24]

    Shi L, Bai F M 2011 J. Chin. Cera. Soc. 39 550 (in Chinese) [石雷, 白飞明 2011 硅酸盐学报 39 550]

    [25]

    Kwei G H, Lawson A C, Billinge S J L, Cheong S W 1993 J. Phys. Chem. 97 2368

    [26]

    Cai G H, Greenblatt M, Li M R 2017 Chem. Mater. 29 5447

    [27]

    Živkovi I, Pra K, Zaharko O, Berger H 2010 J. Phys.: Condens. Matter 22 056002

    [28]

    Oh Y S, Artyukhin S, Yang J J, Zapf V, Kim J W, Vanderbilt D, Cheong S W 2014 Nat. Commun. 5 3201

    [29]

    Ivanov S A, Mathieu R, Nordblad P, Tellgren R, Ritter C, Politova E, Kaleva G, Mosunov A, Stefanovich S, Weil M 2013 Chem. Mater. 25 935

    [30]

    Solana-Madruga E, Dos santos-Garcia A J, Arvalo-Lpez A M, vila-Brande D, Ritter C, Attfield J P, Sez-Puche R 2015 Dalton Trans. 44 20441

    [31]

    Li M R, McCabe E E, Stephens P W, Croft M, Collins L, Kalinin S V, Deng Z, Retuerto M, Gupta A S, Padmanabhan H, Gopalan V, Grams C P, Hemberger J, Orlandi F, Manuel P, Li W M, Jin C Q, Walker D, Greenblatt M 2017 Nat. Commun. 8 2037

    [32]

    Li M R, Croft M, Stephens P W, Ye M, Vanderbilt D, Retuerto M, Deng Z, Grams C P, Hemberger J, Hadermann J, Li W M, Jin C Q, Saouma F O, Jang J I, Akamatsu H, Gopalan V, Walker D, Greenblatt M 2015 Adv. Mater. 27 2177

    [33]

    Li M R, Walker D, Retuerto M, Sarkar T, Hadermann J, Stephens P W, Croft M, Ignatov A, Grams C P, Hemberger J, Nowik I, Halasyamani P S, Tran T T, Mukherjee S, Dasgupta T S, Greenblatt M 2013 Angew. Chem. Int. Ed. 52 8406

    [34]

    Li M R, Retuerto M, Walker D, Sarkar T, Stephens P W, Mukherjee S, Dasgupta T S, Hodges J P, Croft M, Grams C P, Hemberger J, Snchez-Bentez J, Huq A, Saouma F O, Jang J I, Greenblatt M 2014 Angew. Chem. Int. Ed. 53 10774

    [35]

    Li M R, Retuerto M, Stephens P W, Croft M, Sheptyakov D, Pomjakushin V, Deng Z, Akamatsu H, Gopalan V, Snchez-Bentez J, Saouma F O, Jang J I, Walker D, Greenblatt M 2016 Angew. Chem. Int. Ed. 128 10016

    [36]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [37]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [38]

    Song G, Zhang W 2016 Sci. Rep. 6 20133

    [39]

    Zhao L, Du C H, Komarek A C 2017 Phys. Status Solidi: Rap. Res. Lett. 11 1700073

    [40]

    Ivanov S, Nordblad P, Mathieu R, Tellgren R, Politova E, Andr G 2011 Eur. J. Inorg. Chem. 2011 4691

    [41]

    Ye M, Vanderbilt D 2016 Phys. Rev. B 93 134303

    [42]

    Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V, Cheong S W 2008 Phys. Rev. Lett. 100 047601

    [43]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [44]

    Yez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Snchez-Andjar M, Mira J, Biskup N, Sears-Rodr guez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [45]

    Sharma G, Saha J, Kaushik S, Siruguri V, Patnaik S 2013 Appl. Phys. Lett. 103 012903

    [46]

    Blasco J, Garca-Muoz J, Garca J, Stankiewicz J, Subas G, Ritter C, Rodrguez-Velamazn J 2015 Appl. Phys. Lett. 107 012902

    [47]

    Choi H Y, Moon J Y, Kim J H, Choi Y J, Lee N 2017 Crystals 7 67

    [48]

    Yi W, Princep A J, Guo Y, Johnson R D, Khalyavin D, Manuel P, Senyshyn A, Presniakov I A, Sobolev A V, Matsushita Y 2015 Inorg. Chem. 54 8012

    [49]

    Dos santos-Garca A J, Solana-Madruga E, Ritter C, Andrada-Chacn A, Snchez-Bentez J, Mompean F J, Garcia-Hernandez M, Sez-Puche R, Schmidt R 2017 Angew. Chem. Int. Ed. 129 4438

    [50]

    Mathieu R, Ivanov S A, Solovyev I V, Bazuev G V, Anil Kumar P, Lazor P, Nordblad P 2013 Phys. Rev. B 87 014408

    [51]

    Zhao H J, Ren W, Yang Y, iguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

  • [1]

    Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M, Zhang Z, Yao J, Gao X, Liu J 2016 ACS Nano 10 1025

    [2]

    Li H B, Lu N, Zhang Q, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156

    [3]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C, Long Y 2017 Adv. Mater. 29 1703435

    [4]

    Yu P, Chu Y, Ramesh R 2012 Phil. Trans. R. Soc. A 370 4856

    [5]

    Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M, Wu S, Lu X, Zeng M, Gao X, Dai J, Liu J 2015 Sci. Rep. 5 9680

    [6]

    Khomskii D 2009 Physics 2 20

    [7]

    Wang Y, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268

    [8]

    Caignaert V, Maignan A, Singh K, Simon C, Pralong V, Raveau B, Mitchell J F, Zheng H, Huq A, Chapon L C 2013 Phys. Rev. B 88 174403

    [9]

    Ghara S, Suard E, Fauth F, Tran T T, Halasyamani P S, Iyo A, Rodrg uez-Carvajal J, Sundaresan A 2017 Phys. Rev. B 95 224416

    [10]

    Chi Z H, Jin C Q 2007 Prog. Phys. 27 225 (in Chinese) [迟振华, 靳常青 2007 物理学进展 27 225]

    [11]

    Wang K F, Liu J M, Wang Y 2009 Prog. Phys. 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [12]

    Sun Y 2014 Physics 43 166 (in Chinese) [孙阳 2014 物理 43 166]

    [13]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [14]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [15]

    Dong S, Xiang H J 2014 Physics 43 173 (in Chinese) [董帅, 向红军 2014 物理 43 173]

    [16]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [17]

    Smolenskii G A, Chupis I E 1982 Sov. Phys. Usp. 25 475

    [18]

    Bokov V, Mylnikova I, Smolenskii G 1962 Sov. Phys. Jetp-Ussr 15 447

    [19]

    Ivanov S A, Tellgren R, Rundlof H, Thomas N W, Ananta S 2000 J. Phys.: Condens. Matter 12 2393

    [20]

    Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U 2003 Science 299 1719

    [21]

    Dho J, Qi X, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445

    [22]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889

    [23]

    Nechache R, Cojocaru C V, Harnagea C, Nauenheim C, Nicklaus M, Ruediger A, Rosei F, Pignolet A 2011 Adv. Mater. 23 1724

    [24]

    Shi L, Bai F M 2011 J. Chin. Cera. Soc. 39 550 (in Chinese) [石雷, 白飞明 2011 硅酸盐学报 39 550]

    [25]

    Kwei G H, Lawson A C, Billinge S J L, Cheong S W 1993 J. Phys. Chem. 97 2368

    [26]

    Cai G H, Greenblatt M, Li M R 2017 Chem. Mater. 29 5447

    [27]

    Živkovi I, Pra K, Zaharko O, Berger H 2010 J. Phys.: Condens. Matter 22 056002

    [28]

    Oh Y S, Artyukhin S, Yang J J, Zapf V, Kim J W, Vanderbilt D, Cheong S W 2014 Nat. Commun. 5 3201

    [29]

    Ivanov S A, Mathieu R, Nordblad P, Tellgren R, Ritter C, Politova E, Kaleva G, Mosunov A, Stefanovich S, Weil M 2013 Chem. Mater. 25 935

    [30]

    Solana-Madruga E, Dos santos-Garcia A J, Arvalo-Lpez A M, vila-Brande D, Ritter C, Attfield J P, Sez-Puche R 2015 Dalton Trans. 44 20441

    [31]

    Li M R, McCabe E E, Stephens P W, Croft M, Collins L, Kalinin S V, Deng Z, Retuerto M, Gupta A S, Padmanabhan H, Gopalan V, Grams C P, Hemberger J, Orlandi F, Manuel P, Li W M, Jin C Q, Walker D, Greenblatt M 2017 Nat. Commun. 8 2037

    [32]

    Li M R, Croft M, Stephens P W, Ye M, Vanderbilt D, Retuerto M, Deng Z, Grams C P, Hemberger J, Hadermann J, Li W M, Jin C Q, Saouma F O, Jang J I, Akamatsu H, Gopalan V, Walker D, Greenblatt M 2015 Adv. Mater. 27 2177

    [33]

    Li M R, Walker D, Retuerto M, Sarkar T, Hadermann J, Stephens P W, Croft M, Ignatov A, Grams C P, Hemberger J, Nowik I, Halasyamani P S, Tran T T, Mukherjee S, Dasgupta T S, Greenblatt M 2013 Angew. Chem. Int. Ed. 52 8406

    [34]

    Li M R, Retuerto M, Walker D, Sarkar T, Stephens P W, Mukherjee S, Dasgupta T S, Hodges J P, Croft M, Grams C P, Hemberger J, Snchez-Bentez J, Huq A, Saouma F O, Jang J I, Greenblatt M 2014 Angew. Chem. Int. Ed. 53 10774

    [35]

    Li M R, Retuerto M, Stephens P W, Croft M, Sheptyakov D, Pomjakushin V, Deng Z, Akamatsu H, Gopalan V, Snchez-Bentez J, Saouma F O, Jang J I, Walker D, Greenblatt M 2016 Angew. Chem. Int. Ed. 128 10016

    [36]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [37]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [38]

    Song G, Zhang W 2016 Sci. Rep. 6 20133

    [39]

    Zhao L, Du C H, Komarek A C 2017 Phys. Status Solidi: Rap. Res. Lett. 11 1700073

    [40]

    Ivanov S, Nordblad P, Mathieu R, Tellgren R, Politova E, Andr G 2011 Eur. J. Inorg. Chem. 2011 4691

    [41]

    Ye M, Vanderbilt D 2016 Phys. Rev. B 93 134303

    [42]

    Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V, Cheong S W 2008 Phys. Rev. Lett. 100 047601

    [43]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [44]

    Yez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Snchez-Andjar M, Mira J, Biskup N, Sears-Rodr guez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [45]

    Sharma G, Saha J, Kaushik S, Siruguri V, Patnaik S 2013 Appl. Phys. Lett. 103 012903

    [46]

    Blasco J, Garca-Muoz J, Garca J, Stankiewicz J, Subas G, Ritter C, Rodrguez-Velamazn J 2015 Appl. Phys. Lett. 107 012902

    [47]

    Choi H Y, Moon J Y, Kim J H, Choi Y J, Lee N 2017 Crystals 7 67

    [48]

    Yi W, Princep A J, Guo Y, Johnson R D, Khalyavin D, Manuel P, Senyshyn A, Presniakov I A, Sobolev A V, Matsushita Y 2015 Inorg. Chem. 54 8012

    [49]

    Dos santos-Garca A J, Solana-Madruga E, Ritter C, Andrada-Chacn A, Snchez-Bentez J, Mompean F J, Garcia-Hernandez M, Sez-Puche R, Schmidt R 2017 Angew. Chem. Int. Ed. 129 4438

    [50]

    Mathieu R, Ivanov S A, Solovyev I V, Bazuev G V, Anil Kumar P, Lazor P, Nordblad P 2013 Phys. Rev. B 87 014408

    [51]

    Zhao H J, Ren W, Yang Y, iguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

  • [1] Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang. Impedance characteristics of magnetoelectric antennas. Acta Physica Sinica, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [2] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline. Acta Physica Sinica, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [4] Shen Jian-Xin, Shang Da-Shan, Sun Young. Fundamental circuit element and nonvolatile memory based on magnetoelectric effect. Acta Physica Sinica, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [5] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [6] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [7] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] Huang Ying-Zhuang,  Qi Yan,  Du An,  Liu Jia-Hong,  Ai Chuan-Wei,  Dai Hai-Yan,  Zhang Xiao-Li,  Huang Yu-Yan. Magnetoelectric coupling and external field modulation of a composite multiferroic chain. Acta Physica Sinica, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [9] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [10] Yin Yun-Yu, Wang Xiao, Deng Hong-Shan, Zhou Long, Dai Jian-Hong, Long You-Wen. High-pressure synthesis and special physical properties of several ordered perovskite structures. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [11] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [12] Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing. Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics. Acta Physica Sinica, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [13] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [14] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [15] Zhou Wen-Liang, Xia Kun, Xu Da, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect. Acta Physica Sinica, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [16] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [17] Deng Heng, Yang Chang-Ping, Huang Chang, Xu Ling-Fang. Magnetically correlated I-V nonlinearity and electrical transport property of the double-layered perovskite La1.8Ca1.2Mn2O7 compound. Acta Physica Sinica, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [18] Ma Jing, Shi Zhan, Lin Yuan-Hua, Nan Ce-Wen. Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure. Acta Physica Sinica, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [19] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [20] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
Metrics
  • Abstract views:  6834
  • PDF Downloads:  457
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  19 May 2018
  • Published Online:  05 August 2018

/

返回文章
返回