搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁电耦合效应的基本电路元件和非易失性存储器

申见昕 尚大山 孙阳

基于磁电耦合效应的基本电路元件和非易失性存储器

申见昕, 尚大山, 孙阳
PDF
导出引用
  • 磁电耦合效应是指磁场控制电极化或者电场控制磁性的物理现象,它们为开发新型电子器件提供了额外的物理状态自由度,具有巨大的应用潜力.磁电耦合系数作为磁电耦合材料的重要参量,体现了材料磁化和电极化的耦合性能,其随外加物理场的变化可以表现出非线性回滞行为,具备作为非易失存储的物理状态特征.本文讨论了基于磁电耦合效应如何建立起电荷-磁通之间的直接关联,继而实现了第四种基本电路元件并构建了完整的电路元件关系图.在此基础上,研究了多铁性异质结中的非线性磁电耦合效应,并利用其独特的电荷-磁通关联特性,开发了基于磁电耦合系数的电写-磁读型非易失性信息存储、逻辑计算与类神经突触记忆等一系列新型信息功能器件.
      通信作者: 尚大山, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn ; 孙阳, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11534015,51671213,51725104)、国家重点研发计划(批准号:2016YFA0300701)和中国科学院战略性先导科技专项(B类)(批准号:XDB07030200)资助的课题.
    [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2220
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-04-26
  • 刊出日期:  2019-06-20

基于磁电耦合效应的基本电路元件和非易失性存储器

    基金项目: 

    国家自然科学基金(批准号:11534015,51671213,51725104)、国家重点研发计划(批准号:2016YFA0300701)和中国科学院战略性先导科技专项(B类)(批准号:XDB07030200)资助的课题.

摘要: 磁电耦合效应是指磁场控制电极化或者电场控制磁性的物理现象,它们为开发新型电子器件提供了额外的物理状态自由度,具有巨大的应用潜力.磁电耦合系数作为磁电耦合材料的重要参量,体现了材料磁化和电极化的耦合性能,其随外加物理场的变化可以表现出非线性回滞行为,具备作为非易失存储的物理状态特征.本文讨论了基于磁电耦合效应如何建立起电荷-磁通之间的直接关联,继而实现了第四种基本电路元件并构建了完整的电路元件关系图.在此基础上,研究了多铁性异质结中的非线性磁电耦合效应,并利用其独特的电荷-磁通关联特性,开发了基于磁电耦合系数的电写-磁读型非易失性信息存储、逻辑计算与类神经突触记忆等一系列新型信息功能器件.

English Abstract

参考文献 (53)

目录

    /

    返回文章
    返回