Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cellular automata ray tracing in two-dimensional aero-optical flow fields

Luo Liang Xia Hui Liu Jun-Sheng Fei Jia-Le Xie Wen-Ke

Citation:

Cellular automata ray tracing in two-dimensional aero-optical flow fields

Luo Liang, Xia Hui, Liu Jun-Sheng, Fei Jia-Le, Xie Wen-Ke
PDF
HTML
Get Citation
  • For the supersonic flow field with large density fluctuation produced by the unsteady flow and turbulent large-scale structures, an effective method to obtain the beam path is to solve the ray equation. Then the optical path difference (OPD), Strehl ratio (SR), optical transmission function (OTF), etc. can be obtained to analyze the optical distortion, and the correction of aero optics effects can be realized to improve the optical system performance. Generally, when the refractive index distribution is arbitrary, the ray equation analytic solution is difficult to obtain. Cellular automata (CA) ray tracing algorithm is proposed in this paper for aero-optical calculation in the 2D discrete flow fields. Unlike numerically solving the ray equation (NSRE), the coordinate value and the offset angle are calculated according to the position and direction transformation rules in CA algorithm. The position transformation rule is used to obtain the end point of the beam vector and determine whether the offset angle needs calculating at each iteration, the direction transformation rule is to calculate the offset angles. Then the refractive index field is integrated along the beam path to obtain the optical path length (OPL). The OPD is calculated from OPL. In this paper, aero-optical calculation is based on two types of flow fields. The supersonic shear layer including supersonic mixing layer and boundary layer 2D density distribution is measured by the nano-tracer-based planar laser scattering (NPLS) technique. The supersonic flow field surrounding the optical dome is simulated based on detached-eddy simulation (DES).The OPDrms and program running time quantitatively verify the calculation accuracy and high efficiency of CA. The results show that for the 2D supersonic NPLS flow field and the 2D supersonic flow field surrounding the optical dome, the calculation accuracy of CA is approximately equal to NSRE. Moreover, we find that the program running time of NSRE is about four times that of the CA algorithm, so the efficiency of ray tracing is effectively improved. Thus, the CA algorithm provides a new scheme for aero-optical calculation in the 2D supersonic flow field. Meanwhile, it also provides a guideline for the research on the ray tracing in 3D discrete aero-optical flow field.
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund, China (Grant No. 6140415020311), the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04), and the Hunan Engineering Research Center of Optoelectronic Inertial Technology, China (Grant No. HN-NUDT1908)
    [1]

    Gordeyev S, Jumper E 2010 Prog. Aerosp. Sci. 46 8

    [2]

    谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛 2019 物理学报 68 094202Google Scholar

    Xie W K, Liu J S, Fei J L, Zhou Q, Xia H, Chen X, Zhang P, Peng Y M, Yu T 2019 Acta Phys. Sin. 68 094202Google Scholar

    [3]

    Pond J E, Sutton G W 2006 J. Aircraft 43 3

    [4]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 27Google Scholar

    [5]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [6]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 3

    [7]

    Montagnino L 1968 J. Opt. Soc. Am. A 58 12

    [8]

    Chang X F, Wang T, Wan S Z, Yan J, Fu W X 2015 Optik 126 23

    [9]

    Xu L, Xue D T, Lv X Y 2018 Opt. Express 26 1Google Scholar

    [10]

    Tang L P, Tang L M , Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301

    [11]

    Chen Q, Wang Y 2015 Physica A 432 15

    [12]

    Sun G Q, Jin Z, Song L P, Chakraborty A, Li B L 2011 Ecol. Res. 26 2

    [13]

    Chen C K, Li J, Zhang D 2012 Physica A 391 7

    [14]

    Ahmadpour S S, Mosleh M 2018 J. Supercomput. 74 9

    [15]

    Qin Y, Feng M Y, Lu H C, Cottrell G W 2018 Int. J. Comput. Vision. 126 751Google Scholar

    [16]

    Zhang H, Wei J, Gao X L, Hu J 2019 Int. J. Mod. Phys. C 30 5

    [17]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [18]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China, Ser. G 52 12Google Scholar

    [19]

    Zhu J, Li X L, Tang H Q, Zhu K C 2017 Opt. Express 25 17Google Scholar

    [20]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2018 Opt. Commun. 436 1Google Scholar

    [21]

    Guo G M, Liu H 2017 Appl. Opt. 56 16Google Scholar

    [22]

    Ji B, Long Y, Long X P, Qian Z D, Zhou J J 2017 J. Hydrodyn. 29 1Google Scholar

    [23]

    Weghorst H, Hooper G, Greenberg D P 1984 Acm. T. Graphic. 3 1Google Scholar

    [24]

    Huang Y, Shi G D, Zhu K Y 2016 J. Quant. Spectrosc. Radiat. 176 24Google Scholar

    [25]

    Jiang H, Ren G, Zheng L, Cheng J X, Huang Z F 2014 Int. J. Mod. Phys. B 28 16

    [26]

    赵玉新 2008 博士学位论文(长沙: 国防科学技术大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    易仕和, 赵玉新, 田立丰, 何霖, 程忠宇 2009 空气动力学学报 27 114Google Scholar

    Yi S H, Zhao Y X, Tian L F, He L, Cheng Z Y 2009 Acta Aerodyn. Sin. 27 114Google Scholar

    [28]

    易仕和, 陈植, 何霖, 武宇, 田立丰 2014 实验流体力学 28 1Google Scholar

    Yi S H, Chen Z, He L, Wu Y, Tian L F 2014 J. Fluid. Mech. 28 1Google Scholar

    [29]

    Tian L F, Yi S H, Zhao Y X, He L, Chen Z Y 2009 Sci. China, Ser. G 52 9Google Scholar

    [30]

    Lyons D C, Peltier L J, Zajaczkowski F J, Paterson E G 2007 J. Fluids Eng.-Trans. ASME 131 11

    [31]

    Usta O, Korkut E 2018 Ocean Eng. 160 15Google Scholar

  • 图 1  NPLS获得的超声速剪切层图像 (a)混合层; (b)边界层

    Figure 1.  The flow visualization results of supersonic shear layers obtained by NPLS: (a) Supersonic mixing layer; (b) supersonic boundary layer.

    图 2  光学头罩绕流流场密度场

    Figure 2.  The density field distribution of supersonic flow field surrounding the optical dome obtained by DES.

    图 3  CA算法与NSER算法在混合层得的光线路径

    Figure 3.  Beam paths obtained by CA and NSRE in mixing layer.

    图 4  CA算法与NSRE算法计算得到的OPD (a)混合层; (b)边界层; (c)含激波的超声速光学头罩二维剖面流场

    Figure 4.  The OPD results calculated by CA and NSRE: (a) Supersonic mixing layer; (b) supersonic boundary layer; (c) supersonic flow field surrounding the optical dome.

    表 1  CA与NSRE算法计算混合层流场的程序执行时间

    Table 1.  The program running time of CA and NSRE in mixing layer.

    方法t1/st2/st3/st4/st5/sta/s
    CA2.0322.0412.1572.0852.0772.078
    NSRE8.4638.4708.5228.4918.5118.491
    DownLoad: CSV

    表 2  CA与NSRE算法计算边界层流场的程序执行时间

    Table 2.  The program running time of CA and NSRE in boundary layer.

    方法t1/st2/st3/st4/st5/sta/s
    CA1.9662.0021.9831.9641.9721.977
    NSRE7.2417.2507.1437.2507.2197.220
    DownLoad: CSV

    表 3  CA与NSRE算法计算高速绕流流场的程序执行时间

    Table 3.  The program running time of CA and NSRE in supersonic flow field surrounding the optical dome.

    方法t1/st2/st3/st4/st5/sta/s
    CA2.8312.8842.8272.8732.8402.851
    NSRE11.37511.52511.40111.38011.39711.416
    DownLoad: CSV
  • [1]

    Gordeyev S, Jumper E 2010 Prog. Aerosp. Sci. 46 8

    [2]

    谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛 2019 物理学报 68 094202Google Scholar

    Xie W K, Liu J S, Fei J L, Zhou Q, Xia H, Chen X, Zhang P, Peng Y M, Yu T 2019 Acta Phys. Sin. 68 094202Google Scholar

    [3]

    Pond J E, Sutton G W 2006 J. Aircraft 43 3

    [4]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 27Google Scholar

    [5]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [6]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 3

    [7]

    Montagnino L 1968 J. Opt. Soc. Am. A 58 12

    [8]

    Chang X F, Wang T, Wan S Z, Yan J, Fu W X 2015 Optik 126 23

    [9]

    Xu L, Xue D T, Lv X Y 2018 Opt. Express 26 1Google Scholar

    [10]

    Tang L P, Tang L M , Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301

    [11]

    Chen Q, Wang Y 2015 Physica A 432 15

    [12]

    Sun G Q, Jin Z, Song L P, Chakraborty A, Li B L 2011 Ecol. Res. 26 2

    [13]

    Chen C K, Li J, Zhang D 2012 Physica A 391 7

    [14]

    Ahmadpour S S, Mosleh M 2018 J. Supercomput. 74 9

    [15]

    Qin Y, Feng M Y, Lu H C, Cottrell G W 2018 Int. J. Comput. Vision. 126 751Google Scholar

    [16]

    Zhang H, Wei J, Gao X L, Hu J 2019 Int. J. Mod. Phys. C 30 5

    [17]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [18]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China, Ser. G 52 12Google Scholar

    [19]

    Zhu J, Li X L, Tang H Q, Zhu K C 2017 Opt. Express 25 17Google Scholar

    [20]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2018 Opt. Commun. 436 1Google Scholar

    [21]

    Guo G M, Liu H 2017 Appl. Opt. 56 16Google Scholar

    [22]

    Ji B, Long Y, Long X P, Qian Z D, Zhou J J 2017 J. Hydrodyn. 29 1Google Scholar

    [23]

    Weghorst H, Hooper G, Greenberg D P 1984 Acm. T. Graphic. 3 1Google Scholar

    [24]

    Huang Y, Shi G D, Zhu K Y 2016 J. Quant. Spectrosc. Radiat. 176 24Google Scholar

    [25]

    Jiang H, Ren G, Zheng L, Cheng J X, Huang Z F 2014 Int. J. Mod. Phys. B 28 16

    [26]

    赵玉新 2008 博士学位论文(长沙: 国防科学技术大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    易仕和, 赵玉新, 田立丰, 何霖, 程忠宇 2009 空气动力学学报 27 114Google Scholar

    Yi S H, Zhao Y X, Tian L F, He L, Cheng Z Y 2009 Acta Aerodyn. Sin. 27 114Google Scholar

    [28]

    易仕和, 陈植, 何霖, 武宇, 田立丰 2014 实验流体力学 28 1Google Scholar

    Yi S H, Chen Z, He L, Wu Y, Tian L F 2014 J. Fluid. Mech. 28 1Google Scholar

    [29]

    Tian L F, Yi S H, Zhao Y X, He L, Chen Z Y 2009 Sci. China, Ser. G 52 9Google Scholar

    [30]

    Lyons D C, Peltier L J, Zajaczkowski F J, Paterson E G 2007 J. Fluids Eng.-Trans. ASME 131 11

    [31]

    Usta O, Korkut E 2018 Ocean Eng. 160 15Google Scholar

  • [1] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [2] Zhang Shu-He, Liang Zhen, Zhou Jin-Hua. Using quaternions to analyze the trapping force of an ellipsoidal bead. Acta Physica Sinica, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [3] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [5] Zhang Tian-Tian, Yi Shi-He, Zhu Yang-Zhu, He Lin. Reconstruction and calibration on aero-optical wavefront aberration based on Background oriented schlieren based wavefront sensing. Acta Physica Sinica, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [6] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [7] Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [8] Chen Can, Tong Ya-Jun, Xie Hong-Lan, Xiao Ti-Qiao. Study of the focusing properties of Laue bent crystal by ray-tracing. Acta Physica Sinica, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [9] Yue Hao, Shao Chun-Fu, Yao Zhi-Sheng. Pedestrian evacuation flow simulation based on cellular automata. Acta Physica Sinica, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [10] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [11] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [12] Mu Ting-Kui, Zhang Chun-Min, Zhao Bao-Chang. Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer. Acta Physica Sinica, 2009, 58(6): 3877-3886. doi: 10.7498/aps.58.3877
    [13] Wu Hai-Ying, Zhang Chun-Min, Zhao Bao-Chang, Li Ying-Cai. Calculation and analysis of the optical path difference of modified wollaston prism. Acta Physica Sinica, 2009, 58(3): 1642-1647. doi: 10.7498/aps.58.1642
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [16] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [17] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [18] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [19] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
Metrics
  • Abstract views:  5200
  • PDF Downloads:  129
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2020
  • Accepted Date:  16 June 2020
  • Available Online:  17 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回