Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions

Wang Mo-Fan Ying Peng-Zhan Li Xie Cui Jiao-Lin

Citation:

Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions

Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin
PDF
HTML
Get Citation
  • Cu3SbSe4, one of the ternary p-type semiconductor materials with chalcopyrite structure, has aroused much interest in thermoelectrics due to its inherent large effective mass and narrow bandgap. Therefore, many researches have been done, which cover the single and/or multi-element doping to manipulate its band structure and introduce the point defects. Although great achievements have been made in recent years, the mechanism in Cu3SbSe4 with respect to the phonon and electronic transport properties needs further investigating. In this work, first, Sn and S are co-doped into Cu3SbSe4 and then the resulting compound is alloyed with Ga2Te3, to improve its TE performance and understand the mechanism by calculating the band structure and crystal structure. The calculation of band structure reveals that an impurity band is created within the bandgap after co-doping Sn and S due to their contributions to the density of the states (DOS), which is directly responsible for the significant improvement in carrier concentration (nH) and electrical property. Therefore, the power factor (PF) is enhanced from 0.52 × 10–3 to 1.3 × 10–3 W·m–1·K–2. Although the effect associated with the Ga (Te) residing at Sb (Se) sites on the band structure is limited due to the fact that both the single Ga- and single Te-doped band structure remain almost unchanged, the structural parameters (bond lengths and angles) of the polyhedrons [SeCu3Sb] and [SbSe4] before and after Te and Ga residing at Se and Sb sites respectively change remarkably. This yields the significant distortion of local lattice structure on an atomic scale. Therefore, the phonon scattering is enhanced and the lattice thermal conductivity (κL) decreases from 1.23 to 0.81 W·K–1·m–1 at 691 K. The reduction in κL prevents the total thermal conductivity (κ) from being enhanced rapidly. As a consequence, the highest ZT value of 0.64 is attained, which is much higher than that of the pristine Cu3SbSe4 (ZT = 0.26). In addition, we not only present a synergistic strategy to separately optimize the phonon and electronic properties, but also fully elaborate its mechanism and better understand that this strategy is an effective way to improve the TE performance of the Cu3SbSe4-based solid solutions.
      Corresponding author: Ying Peng-Zhan, ypz3889@cumt.edu.cn ; Cui Jiao-Lin, cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671109)
    [1]

    Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527Google Scholar

    [2]

    Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558Google Scholar

    [3]

    陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201Google Scholar

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar

    [4]

    Zhao D G, Wu D, Bo L 2017 Energies 10 1524Google Scholar

    [5]

    Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227Google Scholar

    [6]

    Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150Google Scholar

    [7]

    Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399Google Scholar

    [8]

    Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404Google Scholar

    [9]

    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38Google Scholar

    [10]

    Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596Google Scholar

    [11]

    Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676Google Scholar

    [12]

    Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911

    [13]

    Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648Google Scholar

    [14]

    Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336Google Scholar

    [15]

    Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68Google Scholar

    [16]

    Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221Google Scholar

    [17]

    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658Google Scholar

    [18]

    Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166Google Scholar

    [19]

    Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886Google Scholar

    [20]

    Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546Google Scholar

    [21]

    Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321Google Scholar

    [22]

    Do D T, Mahanti D 2015 J. Alloys Compd. 625 346Google Scholar

    [23]

    Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905Google Scholar

    [24]

    Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37

    [25]

    Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304Google Scholar

    [26]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101Google Scholar

    [27]

    Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar

    [28]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133Google Scholar

    [29]

    Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [33]

    Pulay P 1980 Chem. Phys. Lett. 73 393Google Scholar

    [34]

    Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726Google Scholar

    [35]

    Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485Google Scholar

    [36]

    Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212Google Scholar

    [37]

    Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202Google Scholar

    [38]

    Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477Google Scholar

    [39]

    Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar

    [40]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [41]

    Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948Google Scholar

    [42]

    Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360Google Scholar

    [43]

    Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar

    [44]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [45]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882Google Scholar

    [46]

    Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905Google Scholar

    [47]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar

  • 图 1  (a) (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175)的粉末XRD图谱; (b) 晶格结构常数ac; (c) 四方相晶体结构变形参数η; (d) 内部点阵结构扭曲参数ψ

    Figure 1.  (a) X-ray diffraction patterns of the powders (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175); (b) lattice constants a and c; (c) tetragonal deformation parameters η; (d) internal lattice distortion parameter ψ.

    图 2  三种不同占位材料的计算形成能(Ef) (a) 本征Cu24Sb8Se32 (Ef = 0), 作为比较对象; (b) Sn和S共掺杂的Cu24Sb7Sn1Se28S4; (c) Ga占位在Sb位置(Cu24Sb7Ga1Se32); (d) Te 占位在Se位置(Cu24Sb8Se31Te1). Ef值均是相对于本征Cu24Sb8Se32的形成能

    Figure 2.  Formation energies (Ef) of three solid solutions with different element occupations. (a) Pristine Cu24Sb8Se32 (Ef = 0) for comparidon; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga residing at Sb site (Cu24Sb7Ga1Se32); (d) Te residing at Se site (Cu24Sb8Se31Te1). The Ef values are their corresponding formation energies in comparison to that of the pristine structure.

    图 3  各种材料的能带结构与态密度(DOS) (a) Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds

    Figure 3.  Band structures and the density of the states (DOS) of different materials: (a) Pristine Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds.

    图 4  Te和Ga分别占位在Se和Sb前后的多面体[SeCu3Sb]和[SbSe4]结构参数(键长和键角)

    Figure 4.  Structural parameters (bond lengths and angles) of the polyhedrons [SeCu3Sb] and [SbSe4] before and after residing of Te and Ga at Se and Sb sites respectively.

    图 5  (a) 在室温下(Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175)材料的霍尔载流子浓度(nH)与Ga2Te3含量(x值)的关系; (b) 在室温下迁移率(μ)与Ga2Te3含量(x值)的关系

    Figure 5.  (a) Hall carrier concentration (nH) as a function of Ga2Te3 content (x value) at room temperature (RT) for (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175); (b) mobility (μ) as a function of Ga2Te3 content (x value) at RT.

    图 6  (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01—0.015)材料的热电性能与温度的关系, 本征Cu3SbSe4的性能作为比较 (a) Seebeck 系数(α)与温度的关系; (b) 电导率(σ)与温度的关系; (c) 功率因子(PF) 与温度的关系; (d) 总热导率(κ)与温度的关系; (e) 晶格热导率(κL)与温度的关系; (f) 热电优值(ZT)与温度的关系

    Figure 6.  TE performance of (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01–0.015) as a function of temperature, and the TE performance of pristine Cu3SbSe4 is provided for comparison: (a) Seebeck coefficients as a function of temperature; (b) electrical conductivities as a function of temperature; (c) power factor (PF) as a function of temperature; (d) total thermal conductivities (κ) as a function of temperature; (e) lattice part (κL) as a function of temperature; (f) TE figure of merit (ZT) as a function of temperature.

  • [1]

    Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527Google Scholar

    [2]

    Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558Google Scholar

    [3]

    陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201Google Scholar

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201Google Scholar

    [4]

    Zhao D G, Wu D, Bo L 2017 Energies 10 1524Google Scholar

    [5]

    Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227Google Scholar

    [6]

    Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150Google Scholar

    [7]

    Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399Google Scholar

    [8]

    Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404Google Scholar

    [9]

    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38Google Scholar

    [10]

    Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596Google Scholar

    [11]

    Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676Google Scholar

    [12]

    Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911

    [13]

    Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648Google Scholar

    [14]

    Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336Google Scholar

    [15]

    Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68Google Scholar

    [16]

    Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221Google Scholar

    [17]

    Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658Google Scholar

    [18]

    Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166Google Scholar

    [19]

    Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886Google Scholar

    [20]

    Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546Google Scholar

    [21]

    Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321Google Scholar

    [22]

    Do D T, Mahanti D 2015 J. Alloys Compd. 625 346Google Scholar

    [23]

    Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905Google Scholar

    [24]

    Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37

    [25]

    Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304Google Scholar

    [26]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101Google Scholar

    [27]

    Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar

    [28]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133Google Scholar

    [29]

    Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [33]

    Pulay P 1980 Chem. Phys. Lett. 73 393Google Scholar

    [34]

    Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726Google Scholar

    [35]

    Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485Google Scholar

    [36]

    Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212Google Scholar

    [37]

    Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202Google Scholar

    [38]

    Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477Google Scholar

    [39]

    Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar

    [40]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [41]

    Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948Google Scholar

    [42]

    Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360Google Scholar

    [43]

    Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar

    [44]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [45]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882Google Scholar

    [46]

    Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905Google Scholar

    [47]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar

  • [1] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [6] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [7] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [8] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [9] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [10] Chen Luo-Na, Liu Ye-Feng, Zhang Ji-Ye, Yang Jiong, Xing Juan-Juan, Luo Jun, Zhang Wen-Qing. Effect of Ga doping on the thermoelectric performance of Cu3SbSe4. Acta Physica Sinica, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [11] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [13] Ning Kai-Jie, Zhang Qing-Li, Zhou Peng-Yu, Yang Hua-Jun, Xu Lan, Sun Dun-Lu, Yin Shao-Tang. Structure and spectral properties of Yb3+:Gd2SiO5 crystal. Acta Physica Sinica, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [14] Zhang Xin, Ma Xu-Yi, Zhang Fei-Peng, Wu Peng-Xu, Lu Qing-Mei, Liu Yan-Qin, Zhang Jiu-Xing. Synthesis and thermoelectric properties of nanostructured bismuth telluride alloys. Acta Physica Sinica, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [15] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [16] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [17] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [18] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li, Cao Guang-Hui. Influence of 3 T magnetic field on the crystal structure of Zn films prepared by vapor deposition. Acta Physica Sinica, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [19] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [20] Xu Min, Sheng Wen, Gao Zhan, Zhao Liang-Lei, Jiang Bei, Yang Lei, Zhang Lan-Ting. Characterisation of the crystal structure of La0.4FeCo3Sb12 by means of x-ray and electron diffractions. Acta Physica Sinica, 2005, 54(7): 3302-3306. doi: 10.7498/aps.54.3302
Metrics
  • Abstract views:  4194
  • PDF Downloads:  45
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2020
  • Accepted Date:  24 December 2020
  • Available Online:  14 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回