Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering

Li Meng-Rong Ying Peng-Zhan Li Xie Cui Jiao-Lin

Citation:

Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering

Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin
PDF
HTML
Get Citation
  • SnTe is a good alternative to PbTe in the thermoelectric (TE) applications, in that it is a compound with no toxic element Pb. Besides, the compound SnTe has a relatively narrow bandgap (0.3–0.4 eV) and high Sn vacancy concentration (Snv) as well. Accordingly, it gives a high carrier concentration (1021 cm–3) at room temperature (RT), which is not favorable for thermoelectrics, therefore the regulation of both the electronic and phonon scattering mechanisms is strongly required. Up to date, there have been many approaches to improving its TE performance. The typical examples are those involving the valence band convergence, nanostructuring, substitutional and interstitial defects, and lattice softening, which are all practical and effective to improve the TE performance of SnTe. However, in this work the entropy is taken as an indicator to design the SnTe-based TE material with multicomponents and then optimize its TE performance. The detailed scheme involves the chemical composition design step by step. At first, SnTe alloys with 5% GaTe to form a solid solution Sn0.95Ge0.05Te, aiming to increase the solubility of the foreign species. The second step is to form another solid solution (Sn0.95Ge0.05Te)0.95(Ag2Se)0.05 via the alloying Sn0.95Ge0.05Te with 5% Ag2Se. The purpose of this step is to reduce the p-type carrier concentration of the system, for the species Ag2Se is a typical n-type semiconductor. The last step is to form a series of solid solutions (Sn0.95–xGe0.05BixTe)0.95(Ag2Se)0.05 by substituting different amounts of Bi on Sn in (Sn0.95Ge0.05Te)0.95(Ag2Se)0.05, to further enhance the configurational entropy (ΔS). Because of the above approaches, both the carrier concentration and thermal conductivity decrease while the highest TE figure of merit (ZT) increases from 0.22 for the pristine SnTe to ~0.8 for the alloy (Sn0.95–xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0.075). This result proves that the entropy engineering is a practical way to improve the TE performance of SnTe, and at the same time it illustrates that it is very important to harmonize the entropy engineering with other electronic and phonon scattering mechanisms, in order to improve the TE performance of SnTe effectively.
      Corresponding author: Cui Jiao-Lin, cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671109).
    [1]

    Zhang Q, Liao B, Lan Y C, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 PNAS 110 13261Google Scholar

    [2]

    Rogers L 1968 J. Phys. D:Appl. Phys. 1 845Google Scholar

    [3]

    Brebrick R 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [4]

    Li M, Ying P, Du Z, Liu X, Li X, Fang T, Cui J 2022 ACS Appl. Mater. Interfaces 14 8171Google Scholar

    [5]

    Banik A, Shenoy U S, Saha S, Waghmare U V, Biswas K 2016 J. Am. Chem. Soc. 138 13068Google Scholar

    [6]

    Tan G, Shi F, Hao S, Chi H, Bailey T P, Zhao L, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507Google Scholar

    [7]

    Zhou M, Gibbs Z M, Wang H, Han Y, Xin C, Li L 2014 Phys. Chem. Chem. Phys. 16 20741Google Scholar

    [8]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [9]

    Pei Y, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [10]

    Moshwan R, Yang L, Zou J, Chen Z G 2017 Adv. Funct. Mater. 27 1703278Google Scholar

    [11]

    Wang L, Tan X, Liu G, Xu J, Shao H, Yu B, Jiang H, Yue S, Jiang J 2017 ACS Energy Lett. 2 1203Google Scholar

    [12]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [13]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [14]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [15]

    Zheng L, Li W, Lin S, Li J, Chen Z, Pei Y 2017 ACS Energy Lett. 2 563Google Scholar

    [16]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [17]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [18]

    Tan G, Zeier W G, Shi F, Wang P, Snyder G J, Dravid V P, Kanatzidis M G 2015 Chem. Mater. 27 7801Google Scholar

    [19]

    Tang J, Gao B, Lin S, Wang X, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2018 ACS Energy Lett. 3 1969Google Scholar

    [20]

    Yao Z, Li W, Tang J, Chen Z, Lin S, Biswas K, Burkov A, Pei Y 2019 InfoMat 1 571Google Scholar

    [21]

    Liu R, Chen H, Zhao K, Qin Y, Jiang B, Zhang T, Sha G, Shi X, Uher C, Zhang W, Chen L 2017 Adv. Mater. 29 1702712Google Scholar

    [22]

    Hu L, Zhang Y, Wu H, Li J, Li Y, Mckenna M, He J, Liu F, Pennycook S, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [23]

    Acharya S, Anwar S, Mori T, Soni A 2018 J. Mater. Chem. C 6 6489Google Scholar

    [24]

    Sarkar D, Ghosh T, Banik A, Roychowdhury S, Sanyal D, Biswas K 2020 Angew Chem. Int. Ed. 59 11115Google Scholar

    [25]

    Jood P, Ohta M 2020 ACS Appl. Energy Mater. 3 2160

    [26]

    Mi W, Qiu P, Zhang T, Lv Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [27]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [28]

    Kim H, Gibbs Z, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [29]

    Roychowdhury S, Shenoy U S, Waghmare U V. Biswas K 2017 J. Mater. Chem. C 5 5737Google Scholar

    [30]

    Song S, Lo C, Aminzare M, Tseng Y, Valiyaveettil S, Mozharivskyj Y 2020 Dalton Trans. 49 6135Google Scholar

    [31]

    Tan G, Shi F, Sun H, Zhao L, Uher C, Dravid V P, Kanatzidis M G 2014 J. Mater. Chem. A 2 20849Google Scholar

    [32]

    Guo X, Chen Z, Tang J 2020 Appl. Phys. Lett. 116 103901Google Scholar

    [33]

    Chen Z, Guo X, Zhang F, Shi Q, Tang M, Ang R 2020 J. Mater. Chem. A 8 16790Google Scholar

    [34]

    Chen R, Qiu P F, Jiang B B, Hu P, Zhang Y M, Yang J, Ren D, Shi X, Chen L 2018 J. Mater. Chem. A 6 6493Google Scholar

    [35]

    Qiu Y, Jin Y, Wang D Y, Guan M, He W, Peng S, Liu R, Gao X, Zhao L 2019 J. Mater. Chem. A 7 26393Google Scholar

    [36]

    Jiang B, Qiu P, Chen H, Huang J, Mao T, Wang Y, Song Q, Ren D, Shi X, Chen L 2018 Mater. Today Phys. 5 20Google Scholar

    [37]

    Orabi R A R A, Mecholsky N A, Hwang J, Kim W, Rhyee J, Wee D, Fornari M 2016 Chem. Mater. 28 376Google Scholar

    [38]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [39]

    You L, Zhang J, Pan S, Jiang Y, Wang K, Yang J, Pei Y, Zhu Q, Agne M T, Snyder G. J, Ren Z, Zhang W, Luo J 2019 Energy Environ. Sci. 12 3089Google Scholar

    [40]

    Zhu H, Zhao T, Zhang B, An Z, Mao S, Wang G, Han X, Lu X, Zhang J, Zhou X 2021 Adv. Energy Mater. 11 2003304Google Scholar

    [41]

    Li S, Li J, Yang L, Liu F, Ao W, Li Y 2016 Mater. Des. 108 51Google Scholar

    [42]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

  • 图 1  (Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0—0.1)的构型熵(ΔS)与Bi含量(x)的关系. ΔS1和ΔS2代表添加摩尔分数5% Ge和5% Ag2Se后的熵增

    Figure 1.  Dependence of the configurational entropy (ΔS) on the Bi content (x) in (Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0–0.1), where the ΔS1 and ΔS2 represent the increased entropy after addition of 5% Ge and 5% Ag2Se (mole fraction), respectively.

    图 2  (a) 各组材料的XRD谱图; (b) XRD的放大图(28°—29°); (c) 晶格常数a与Bi含量x的关系

    Figure 2.  (a) XRD diffraction patterns of different materials; (b) close-up view XRD patterns between 28°–29°; (c) lattice constants a as a function of Bi content x.

    图 3  样品 (x = 0.05)的透射电镜图 (a) 低倍TEM图; (b) 高倍透射电镜图(HRTEM); (c) 选区电子衍射花样(SAED); (d) 能谱分析图(EDS)

    Figure 3.  Transmission electron microscopy (TEM) images observed on the sample (Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0.05): (a) TEM image; (b) HRTEM image; (c) the selected area electron diffraction (SAED) pattern; (d) EDS analysis.

    图 4  室温条件下本征SnTe, Sn0.95Ge0.05Te和(Sn0.95–xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0, 0.025, 0.050, 0.075, 0.100 样品的(a)载流子浓度(nH); (b)载流子迁移率(μ)

    Figure 4.  (a) Hall hole concentration (nH) and (b) carrier mobility (μ) of the pristine SnTe, Sn0.95Ge0.05Te, (Sn0.95–xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0, 0.025, 0.050, 0.075, 0.100) at room temperature (RT).

    图 5  SnTe, Sn0.95Ge0.05Te和(Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0, 0.025, 0.050, 0.075, 0.100)热电性能随温度的变化 (a) Seebeck系数(α); (b) 电导率 (σ), 插图为功率因子 (PF); (c) 晶格热导率 (κL), 插图为总热导率 (κtotal); (d) 热电优值(ZT )

    Figure 5.  Temperature dependence of the TE properties for SnTe, Sn0.95Ge0.05Te and (Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0, 0.025, 0.050, 0.075, 0.100): (a) Seebeck coefficients (α); (b) electrical conductivities (σ), the insert is the power factors (PF); (c) lattice thermal conductivities. (κL), the insert is the κtotal; (d) Figure of the merit ZT

    图 6  室温下各热电参数与(Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0—0.1)构型熵(ΔS)的关系 (a) Seebeck系数与ΔS的关系; (b) 电导率与ΔS的关系; (c) 晶格热导率与ΔS的关系; (d) 热电优值与ΔS的关系

    Figure 6.  Dependence of the TE performance on the configurational entropy (ΔS) of (Sn0.95-xGe0.05BixTe)0.95(Ag2Se)0.05 (x = 0–0.1): (a) Dependence of the Seebeck coefficient (α) on the configurational entropy (ΔS); (b) dependence of the electrical conductivity (σ) on the configurational entropy (ΔS); (c) dependence of the lattice thermal conductivity (κL) on the configurational entropy (ΔS); (d) dependence of the ZT value on the configurational entropy (ΔS).

  • [1]

    Zhang Q, Liao B, Lan Y C, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 PNAS 110 13261Google Scholar

    [2]

    Rogers L 1968 J. Phys. D:Appl. Phys. 1 845Google Scholar

    [3]

    Brebrick R 1963 J. Phys. Chem. Solids 24 27Google Scholar

    [4]

    Li M, Ying P, Du Z, Liu X, Li X, Fang T, Cui J 2022 ACS Appl. Mater. Interfaces 14 8171Google Scholar

    [5]

    Banik A, Shenoy U S, Saha S, Waghmare U V, Biswas K 2016 J. Am. Chem. Soc. 138 13068Google Scholar

    [6]

    Tan G, Shi F, Hao S, Chi H, Bailey T P, Zhao L, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507Google Scholar

    [7]

    Zhou M, Gibbs Z M, Wang H, Han Y, Xin C, Li L 2014 Phys. Chem. Chem. Phys. 16 20741Google Scholar

    [8]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [9]

    Pei Y, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [10]

    Moshwan R, Yang L, Zou J, Chen Z G 2017 Adv. Funct. Mater. 27 1703278Google Scholar

    [11]

    Wang L, Tan X, Liu G, Xu J, Shao H, Yu B, Jiang H, Yue S, Jiang J 2017 ACS Energy Lett. 2 1203Google Scholar

    [12]

    Tan G, Hao S, Hanus R C, Zhang X, Anand S, Bailey T P, Rettie A J E, Su X, Uher C, Dravid V P, Snyder G J, Wolverton C, Kanatzidis M G 2018 ACS Energy Lett. 3 705Google Scholar

    [13]

    Banik A, Vishal B, Perumal S, Datta R, Biswas K 2016 Energy Environ. Sci. 9 2011Google Scholar

    [14]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [15]

    Zheng L, Li W, Lin S, Li J, Chen Z, Pei Y 2017 ACS Energy Lett. 2 563Google Scholar

    [16]

    Tang J, Gao B, Lin S, Li J, Chen Z, Xiong F, Li W, Chen Y, Pei Y 2018 Adv. Funct. Mater. 28 1803586Google Scholar

    [17]

    Roychowdhury S, Biswas R K, Dutta M, Pati S K, Biswas K 2019 ACS Energy Lett. 4 1658Google Scholar

    [18]

    Tan G, Zeier W G, Shi F, Wang P, Snyder G J, Dravid V P, Kanatzidis M G 2015 Chem. Mater. 27 7801Google Scholar

    [19]

    Tang J, Gao B, Lin S, Wang X, Zhang X, Xiong F, Li W, Chen Y, Pei Y 2018 ACS Energy Lett. 3 1969Google Scholar

    [20]

    Yao Z, Li W, Tang J, Chen Z, Lin S, Biswas K, Burkov A, Pei Y 2019 InfoMat 1 571Google Scholar

    [21]

    Liu R, Chen H, Zhao K, Qin Y, Jiang B, Zhang T, Sha G, Shi X, Uher C, Zhang W, Chen L 2017 Adv. Mater. 29 1702712Google Scholar

    [22]

    Hu L, Zhang Y, Wu H, Li J, Li Y, Mckenna M, He J, Liu F, Pennycook S, Zeng X 2018 Adv. Energy Mater. 8 1802116Google Scholar

    [23]

    Acharya S, Anwar S, Mori T, Soni A 2018 J. Mater. Chem. C 6 6489Google Scholar

    [24]

    Sarkar D, Ghosh T, Banik A, Roychowdhury S, Sanyal D, Biswas K 2020 Angew Chem. Int. Ed. 59 11115Google Scholar

    [25]

    Jood P, Ohta M 2020 ACS Appl. Energy Mater. 3 2160

    [26]

    Mi W, Qiu P, Zhang T, Lv Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [27]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [28]

    Kim H, Gibbs Z, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [29]

    Roychowdhury S, Shenoy U S, Waghmare U V. Biswas K 2017 J. Mater. Chem. C 5 5737Google Scholar

    [30]

    Song S, Lo C, Aminzare M, Tseng Y, Valiyaveettil S, Mozharivskyj Y 2020 Dalton Trans. 49 6135Google Scholar

    [31]

    Tan G, Shi F, Sun H, Zhao L, Uher C, Dravid V P, Kanatzidis M G 2014 J. Mater. Chem. A 2 20849Google Scholar

    [32]

    Guo X, Chen Z, Tang J 2020 Appl. Phys. Lett. 116 103901Google Scholar

    [33]

    Chen Z, Guo X, Zhang F, Shi Q, Tang M, Ang R 2020 J. Mater. Chem. A 8 16790Google Scholar

    [34]

    Chen R, Qiu P F, Jiang B B, Hu P, Zhang Y M, Yang J, Ren D, Shi X, Chen L 2018 J. Mater. Chem. A 6 6493Google Scholar

    [35]

    Qiu Y, Jin Y, Wang D Y, Guan M, He W, Peng S, Liu R, Gao X, Zhao L 2019 J. Mater. Chem. A 7 26393Google Scholar

    [36]

    Jiang B, Qiu P, Chen H, Huang J, Mao T, Wang Y, Song Q, Ren D, Shi X, Chen L 2018 Mater. Today Phys. 5 20Google Scholar

    [37]

    Orabi R A R A, Mecholsky N A, Hwang J, Kim W, Rhyee J, Wee D, Fornari M 2016 Chem. Mater. 28 376Google Scholar

    [38]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [39]

    You L, Zhang J, Pan S, Jiang Y, Wang K, Yang J, Pei Y, Zhu Q, Agne M T, Snyder G. J, Ren Z, Zhang W, Luo J 2019 Energy Environ. Sci. 12 3089Google Scholar

    [40]

    Zhu H, Zhao T, Zhang B, An Z, Mao S, Wang G, Han X, Lu X, Zhang J, Zhou X 2021 Adv. Energy Mater. 11 2003304Google Scholar

    [41]

    Li S, Li J, Yang L, Liu F, Ao W, Li Y 2016 Mater. Des. 108 51Google Scholar

    [42]

    Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook S J, Cai W, Sui J 2019 Small 15 1902493Google Scholar

  • [1] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [2] Chen Xu-Fan, Yang Qiang, Hu Xiao-Hui. Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer. Acta Physica Sinica, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [3] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [4] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [5] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng. Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics. Acta Physica Sinica, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [8] Zhang Ya-Ju, Xie Zhong-Shuai, Zheng Hai-Wu, Yuan Guo-Liang. Optimization of electrical and photovoltaic properties of Au-BiFeO3 nanocomposite films. Acta Physica Sinica, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [9] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [10] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [11] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [12] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [13] Wang Feng-Hao, Hu Xiao-Jun. Microstructural and photoelectrical properties of oxygen-ion-implanted microcrystalline diamond films. Acta Physica Sinica, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [14] Zhang Zhen-Jiang, Hu Xiao-Hui, Sun Li-Tao. Single-vacancy-induced transformation of electronic properties in armchair graphene nanoribbons. Acta Physica Sinica, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [15] Zhang Bin, Yang Yin-Tang, Li Yue-Jin, Xu Xiao-Bo. Electrical behavior research of silicon-on-insulator SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [16] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [17] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [18] Jiang Xue-Ning, Wang Hao, Ma Xiao-Ye, Meng Xian_Qin, Zhang Qing-Yu. Growth and electrical conductivity of Gd2O3 doped CeO2 ion conductor electrolyte film on sapphire substrate. Acta Physica Sinica, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [19] Wang Lin-Jun, Liu Jian-Min, Su Qing-Feng, Shi Wei-Min, Xia Yi-Ben. Electrical properties of alpha-particle detectors based on CVD diamond films. Acta Physica Sinica, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
    [20] TANG XIN-FENG, CHEN LI-DONG, T. GOTO, T. HIRAI, YUAN RUN-ZHANG. THERMOELECTRIC PROPERTIES OF p-TYPE BayFexCo4-xSb12. Acta Physica Sinica, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
  • supplement 237302-20221247suppl.pdf supplement
Metrics
  • Abstract views:  2713
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2022
  • Accepted Date:  26 July 2022
  • Available Online:  29 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回