Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions

Zhang Shuo-Xin Liu Shi-Yu Yan Da-Li Yu Qian Ren Hai-Tao Yu Bin Li De-Jun

Citation:

First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions

Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun
PDF
HTML
Get Citation
  • With the rapid development of the aerospace field, the harsh environment requires ultra-high temperature ceramic materials with better mechanical properties and ultra-high melting points. At present, the ultra-high temperature ceramic materials of single metal carbides are required more and more urgently. In order to solve the problem about the insufficient performance of transition metal single carbides, we systematically study the various physical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions in an entire content range (0 ≤ x ≤ 1) based on density functional theory, including the formation energy, impurity formation energy, mixing energy, lattice parameters, elastic constants, elastic modulus, Vickers hardness, fracture toughness, wear resistance, melting point and electronic density of states. The results of formation energy show that with the increase of Hf and Zr doping concentration, the structural stability of Ta1–xHfxC and Ta1–xZrxC solid solutions gradually increase. And the structure of Ta1–xZrxC solid solution is more stable than that of Ta1–xHfxC solid solution when the doping content of Hf and Zr are the same. The results of mixing energy indicate that the formation of binary metal carbides from single metal carbides is an exothermic process. Furthermore, we also find that with the increase of Hf and Zr doping content, the lattice constant and volume of Ta1–xHfxC and Ta1–xZrxC solid solutions can expand, which is mainly attributed to the atomic radii of Hf and Zr being larger than the radius of Ta. The results of mechanical properties show that the Ta1–xHfxC and Ta1–xZrxC solid solution are brittle materials in the entire Hf/Zr content range and have mechanical stability. The bulk modulus of Ta1–xHfxC and Ta1–xZrxC solid solutions decrease with the increase of Hf and Zr content, while the melting point, Young's modulus, shear modulus, Vickers hardness and fracture toughness of Ta1–xHfxC and Ta1–xZrxC solid solutions have peaks with the doping content x = 0.2. Moreover, the addition of Hf/Zr can enhance the wear resistance of TaC. The results of the electronic density of states show that as the doping content increases, the density of states at the Fermi level of Ta1–xHfxC and Ta1–xZrxC solid solutions decrease, which also indicates that the solid solution structure becomes more and more stable.
      Corresponding author: Liu Shi-Yu, buaasyliu@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61601327, 51772209, 11604244) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCQNJC01000)
    [1]

    Kurbatkina V V, Patsrea E I, Vorotilo S A, Levashov E A, Timofeev A N 2016 Ceram. Int. 42 16491Google Scholar

    [2]

    Liu J X, Huang X, Zhang G J 2013 J. Am. Ceram. Soc. 96 1751Google Scholar

    [3]

    Patsrea E I, Levashov E A, Kurbatkina V V, Kovalev D Y 2015 Ceram. Int. 41 8885Google Scholar

    [4]

    Ghaffari S A, Faghihi-Sani M A, Golestani-Fard F, Mandal H 2013 J. Eur. Ceram. Soc. 33 1479Google Scholar

    [5]

    Hao W, Ni N, Guo F W, Cao F C, Jiang J, Zhao X F, Xiao P 2019 J. Am. Ceram. Soc. 102 997Google Scholar

    [6]

    Oyama S T 1996 The Chemistry of Transition Metal Carbides and Nitrides (Glasgow: Blackie Academic and Professional) pp1−27

    [7]

    Pierson H O 1996 Handbook of Refractory Carbides and Nitrides (New Jersey: Noyes Publications) pp5−16

    [8]

    Sciti D, Silvestroni L, Guicciardi S, Fabbriche D D, Bellosi A 2009 J. Mater. Res. 24 2056Google Scholar

    [9]

    Jiang D Y, Wang Q L, Hu W, Wei Z Q, Tong J B, Wan H Q 2016 J. Mater. Res. 31 3401Google Scholar

    [10]

    Adjaoud O, Steinle-Neumann G, Burton B P, Walle A 2009 Phys. Rev. B 80 134112Google Scholar

    [11]

    Wang X G, Liu J X, Kan Y M, Zhang G J 2012 J. Eur. Ceram. Soc. 32 1795Google Scholar

    [12]

    Simonenko E P, Ignatov N A, Simonenko N P, Ezhov Y S, Sevastyanov V G, Kuznetsov N T 2011 Russ. J. Inorg. Chem. 56 1681Google Scholar

    [13]

    Agte C, Alterthum H 1930 Z. Tech. Physik 11 182

    [14]

    Barraza O C, Grasso S, Nasiri N A, Jayaseelan D D, Reece M J, Lee W E 2016 J. Eur. Ceram. Soc. 36 1539Google Scholar

    [15]

    Smith C J, Yu X, Guo Q, Weinberger C R 2018 Acta. Mater. 145 142Google Scholar

    [16]

    Gladyshevsky E I, Fedorov T F, Gorshkova L V 1964 Russ. J. Inorg. Chem. 9 639

    [17]

    Avgustinik A I, Ordan’yan S S 1966 Zh. Prikl. Kim. 39 318

    [18]

    Rudy E 1969 Techn. Rep. AFML-TR 65 334

    [19]

    Yate L, Coy L E, Aperador W 2017 Sci. Rep. 7 3080Google Scholar

    [20]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [22]

    Li X, Chen X, Han L, Ruan C, Lu P, Guan P 2016 J. Mater. Res. 31 2956Google Scholar

    [23]

    Sun S, Fu H, Lin J, Guo G, Lei Y, Wang R 2018 J. Mater. Res. 33 495Google Scholar

    [24]

    Sun X W, Zhang X Y, Zhu Y Z, Zhang S H, Qin J Q, Ma M Z, Liu R P 2013 J. Mater. Sci. 48 7743Google Scholar

    [25]

    Hamann D R 1989 Phys. Rev. B 40 2980Google Scholar

    [26]

    Liu S Y, Liu S, Li D, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc. 97 4019Google Scholar

    [27]

    Liu S Y, Zhang E, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2016 J. Am. Ceram. Soc. 99 3336Google Scholar

    [28]

    Liu S Y, Meng Y, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2017 J. Am. Ceram. Soc. 100 1221Google Scholar

    [29]

    Liu S Y, Meng Y, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2017 Phys. Chem. Chem. Phys. 19 22190Google Scholar

    [30]

    Liu S Y, Chen Q Y, Liu S, Li D J, Li Y, Liu Y, Wang S 2018 J. Alloys Compd. 764 869Google Scholar

    [31]

    Liu S Y, Yu D S, Lv Y K, Li D J, Li Y, Cao M S 2013 Chin. Phys. B 22 017702Google Scholar

    [32]

    邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛 2012 物理学报 61 047103Google Scholar

    Shao Q S, Liu S Y, Zhao H, Yu D S, Cao M S 2012 Acta Phys. Sin. 61 047103Google Scholar

    [33]

    刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛 2013 物理学报 62 177102Google Scholar

    Liu S Y, Yu D S, Lv Y K, Li D J, Cao M S 2013 Acta Phys. Sin. 62 177102Google Scholar

    [34]

    Liu S Y, Shang J X, Wang F H, Zhang Y 2009 J. Phys. Condens. Matter. 21 225005Google Scholar

    [35]

    尚家香, 喻显扬 2008 物理学报 57 2380Google Scholar

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380Google Scholar

    [36]

    尚家香, 于潭波 2009 物理学报 58 1179Google Scholar

    Shang J X, Yu X Y 2009 Acta Phys. Sin. 58 1179Google Scholar

    [37]

    Voigt W 1928 Lehrbuch der Kristallophysik Teuber-Leipzig (New York: Macmillan Publishers)

    [38]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49Google Scholar

    [39]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [40]

    Yang J, Gao F M 2012 Physica B: Condens. Matter 407 3527Google Scholar

    [41]

    Tian Y J, Xu B, Zhao Z H 2012 Int. J. Refract. Met. Hard. Mater 33 93Google Scholar

    [42]

    Niu H Y, Niu S W, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [43]

    Broek D 1982 Elementary Engineering Fracture Mechanics (3rd Ed.) (Netherlands: Martinus Nijhoff Publishers)

    [44]

    Yan X L, Constantin L, Lu Y F, Silvain J F, Nastasi M, Cui B 2018 J. Am. Ceram. Soc. 101 4486Google Scholar

    [45]

    Yu X X, Thompson G B, Weinberger C R 2015 J. Eur. Ceram. Soc. 35 95Google Scholar

    [46]

    Wehr M R, Richards J A, Adair T W 1978 Physics of the Atom (Boston: Addison-Wesley Publishing Company)

    [47]

    Ha D G, Kim J, Han J S, Kang S 2018 Ceram. Int. 44 19247Google Scholar

    [48]

    Vorotilo S, Sidnov K, Mosyagin I Y, Khvan A V, Levashov E A, Patsera E I, Abrikosov I A 2019 J. Alloys Compd. 778 480Google Scholar

    [49]

    Huang B, Duan Y H, Sun Y, Peng M J, Chen S 2015 J. Alloys Compd. 635 213Google Scholar

    [50]

    Weber W 1973 Phys. Rev. B 8 5082Google Scholar

    [51]

    Li H, Zhang L T, Zeng Q F, Guan K, Li K Y, Ren H T, Liu S H, Cheng L F 2011 Solid State Commun. 151 602Google Scholar

    [52]

    Gautam G S, Hari Kumar K C 2014 J. Alloys. Compd. 587 380Google Scholar

    [53]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951Google Scholar

    [54]

    Huang H M, Jiang Z Y and Luo S J 2017 Chin. Phys. B 26 096301Google Scholar

    [55]

    Fahrenholtz W G, Hilmas G E, Talmy I G, Zaykoski J A 2007 J. Am. Ceram. Soc. 90 1347Google Scholar

    [56]

    Ionescu E I, Bernard S, Lucas R, Kroll P, Ushakov S, Navrotsky A, Riedel R 2019 Adv. Eng. Mater. 21 1900269Google Scholar

    [57]

    Pugh S F 1954 Phiosl. Mag.J. Sci. 45 823Google Scholar

    [58]

    Liu Y Z, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 582 500Google Scholar

    [59]

    Jiang X, Zhao J J, Jiang X 2011 Comput. Mater Sci. 50 2287Google Scholar

    [60]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators (Kiev: Naukova Dumka) pp60−180

    [61]

    Yadav D S, Verma J, Singh D P 2016 J. Pure Appl. Ind. Phys. 6 212

    [62]

    Brown H L, Kempter C P 1966 Phys. Stat. Sol. 18 K21Google Scholar

    [63]

    Zhang J, McMahon J M 2021 J. Mater Sci. 56 4266Google Scholar

    [64]

    Feng L, Fahrenholtz W G, Hilmas G E, Watts J, Zhou Y 2019 J. Am. Ceram. Soc. 102 5786Google Scholar

    [65]

    Valenccia D P, Yate L, Aperador W, Li Y G, Coy E 2018 J. Phys. Chem. C 122 25433Google Scholar

    [66]

    Silvestroni L, Pienti L, Guicciardi S, Sciti D 2015 Compos. Part B Eng. 72 10Google Scholar

    [67]

    He L F, Bao Y W, Wang J Y, Li M S, Zhou Y C 2009 Acta. Mater. 57 2765Google Scholar

    [68]

    Leyland A, Matthews A 2000 Wear 246 1Google Scholar

    [69]

    Carlsson A E 1990 Advances in Research and Applications (New York: Academic Press)

    [70]

    Zhou J, Fu C L, Yoo M H, 1995 Phil. Mag. Lett. 71 45Google Scholar

    [71]

    李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105Google Scholar

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta Phys. Sin. 60 117105Google Scholar

    [72]

    Laverntyev A A, Gabrelian B V, Vorzhev V B, Nikiforov I Y, Khyzhun O Y, Rehr J J 2008 J. Alloys Compd. 462 4Google Scholar

  • 图 1  (a)纯TaC的晶体结构; 掺杂含量x为(b) 0.25, (c) 0.5, (d) 0.75, (e) 1的Ta1–xHfxC/Ta1–xZrxC的晶体结构

    Figure 1.  (a) The crystal structure of pure TaC; and the crystal structure Ta1–xHfxC or Ta1–xZrxC with doping content x of (b) 0.25, (c) 0.5, (d) 0.75, (e) 1.

    图 2  Ta1–xHfxC和Ta1–xZrxC固溶体的(a)形成能(Eform)和杂质形成能(Eimp)及(b)混合能(∆Emix)随着Hf或Zr含量x的变化图

    Figure 2.  (a) The formation energy (Eform) and impurity formation energy (Eimp), and (b) mixing energy (∆Emix) of Ta1–xHfxC and Ta1–xZrxC solid solutions as a function of Hf or Zr content x.

    图 3  通过超胞(SC)方法和虚晶近似(VCA)方法比较Ta1–xHfxC和Ta1–xZrxC固溶体的(a)晶格常数和(b)体积随着Hf或Zr含量x的变化图

    Figure 3.  Comparison of the (a) lattice constants and (b) volumes of the Ta1–xHfxC and Ta1–xZrxC solid solutions as a function of the Hf/Zr content by the supercell (SC) and virtual crystal approximation (VCA) methods.

    图 4  Ta1–xHfxC和Ta1–xZrxC固溶体的(a)弹性常数和(b)熔点随着Hf或Zr含量x的变化图

    Figure 4.  (a) The elastic constants and (b) melting points for the Ta1–xHfxC and Ta1–xZrxC solid solutions as functions of the Hf or Zr content.

    图 5  Ta1–xHfxC和Ta1–xZrxC固溶体的力学性质随Hf或Zr含量x的变化 (a) B/G比; (b)泊松比; (c) 杨氏模量; (d) 体积模量; (e) 剪切模量; (f) 维氏硬度; (g) 断裂韧性; (h) 临界能量释放率

    Figure 5.  The mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions as a function of the Hf/Zr content: (a) B/G ratio; (b) Poisson’s ratio; (c) Young’s modulus; (d) bulk modulus; (e) shear modulus; (f) Vickers hardness; (g) fracture toughness; (h) critical energy release rate.

    图 6  Ta1–xHfxC和Ta1–xZrxC固溶体的耐磨性随Hf或Zr含量x的变化图: (a) HV/E; (b) $ H_{\rm V}^3 $/E2

    Figure 6.  The wear resistance of Ta1–xHfxC and Ta1–xZrxC solid solutions as a function of Hf or Zr content: (a) HV/E; (b) $ H_{\rm V}^3 $/E2.

    图 7  不同浓度的(a) Hf掺杂和(b) Zr掺杂TaC电子态密度(DOS)

    Figure 7.  The electronic density of states (DOS) of (a) Hf-doped and (b) Zr-doped TaC with various doping contents.

  • [1]

    Kurbatkina V V, Patsrea E I, Vorotilo S A, Levashov E A, Timofeev A N 2016 Ceram. Int. 42 16491Google Scholar

    [2]

    Liu J X, Huang X, Zhang G J 2013 J. Am. Ceram. Soc. 96 1751Google Scholar

    [3]

    Patsrea E I, Levashov E A, Kurbatkina V V, Kovalev D Y 2015 Ceram. Int. 41 8885Google Scholar

    [4]

    Ghaffari S A, Faghihi-Sani M A, Golestani-Fard F, Mandal H 2013 J. Eur. Ceram. Soc. 33 1479Google Scholar

    [5]

    Hao W, Ni N, Guo F W, Cao F C, Jiang J, Zhao X F, Xiao P 2019 J. Am. Ceram. Soc. 102 997Google Scholar

    [6]

    Oyama S T 1996 The Chemistry of Transition Metal Carbides and Nitrides (Glasgow: Blackie Academic and Professional) pp1−27

    [7]

    Pierson H O 1996 Handbook of Refractory Carbides and Nitrides (New Jersey: Noyes Publications) pp5−16

    [8]

    Sciti D, Silvestroni L, Guicciardi S, Fabbriche D D, Bellosi A 2009 J. Mater. Res. 24 2056Google Scholar

    [9]

    Jiang D Y, Wang Q L, Hu W, Wei Z Q, Tong J B, Wan H Q 2016 J. Mater. Res. 31 3401Google Scholar

    [10]

    Adjaoud O, Steinle-Neumann G, Burton B P, Walle A 2009 Phys. Rev. B 80 134112Google Scholar

    [11]

    Wang X G, Liu J X, Kan Y M, Zhang G J 2012 J. Eur. Ceram. Soc. 32 1795Google Scholar

    [12]

    Simonenko E P, Ignatov N A, Simonenko N P, Ezhov Y S, Sevastyanov V G, Kuznetsov N T 2011 Russ. J. Inorg. Chem. 56 1681Google Scholar

    [13]

    Agte C, Alterthum H 1930 Z. Tech. Physik 11 182

    [14]

    Barraza O C, Grasso S, Nasiri N A, Jayaseelan D D, Reece M J, Lee W E 2016 J. Eur. Ceram. Soc. 36 1539Google Scholar

    [15]

    Smith C J, Yu X, Guo Q, Weinberger C R 2018 Acta. Mater. 145 142Google Scholar

    [16]

    Gladyshevsky E I, Fedorov T F, Gorshkova L V 1964 Russ. J. Inorg. Chem. 9 639

    [17]

    Avgustinik A I, Ordan’yan S S 1966 Zh. Prikl. Kim. 39 318

    [18]

    Rudy E 1969 Techn. Rep. AFML-TR 65 334

    [19]

    Yate L, Coy L E, Aperador W 2017 Sci. Rep. 7 3080Google Scholar

    [20]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [22]

    Li X, Chen X, Han L, Ruan C, Lu P, Guan P 2016 J. Mater. Res. 31 2956Google Scholar

    [23]

    Sun S, Fu H, Lin J, Guo G, Lei Y, Wang R 2018 J. Mater. Res. 33 495Google Scholar

    [24]

    Sun X W, Zhang X Y, Zhu Y Z, Zhang S H, Qin J Q, Ma M Z, Liu R P 2013 J. Mater. Sci. 48 7743Google Scholar

    [25]

    Hamann D R 1989 Phys. Rev. B 40 2980Google Scholar

    [26]

    Liu S Y, Liu S, Li D, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc. 97 4019Google Scholar

    [27]

    Liu S Y, Zhang E, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2016 J. Am. Ceram. Soc. 99 3336Google Scholar

    [28]

    Liu S Y, Meng Y, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2017 J. Am. Ceram. Soc. 100 1221Google Scholar

    [29]

    Liu S Y, Meng Y, Liu S, Li D J, Li Y, Liu Y, Shen Y, Wang S 2017 Phys. Chem. Chem. Phys. 19 22190Google Scholar

    [30]

    Liu S Y, Chen Q Y, Liu S, Li D J, Li Y, Liu Y, Wang S 2018 J. Alloys Compd. 764 869Google Scholar

    [31]

    Liu S Y, Yu D S, Lv Y K, Li D J, Li Y, Cao M S 2013 Chin. Phys. B 22 017702Google Scholar

    [32]

    邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛 2012 物理学报 61 047103Google Scholar

    Shao Q S, Liu S Y, Zhao H, Yu D S, Cao M S 2012 Acta Phys. Sin. 61 047103Google Scholar

    [33]

    刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛 2013 物理学报 62 177102Google Scholar

    Liu S Y, Yu D S, Lv Y K, Li D J, Cao M S 2013 Acta Phys. Sin. 62 177102Google Scholar

    [34]

    Liu S Y, Shang J X, Wang F H, Zhang Y 2009 J. Phys. Condens. Matter. 21 225005Google Scholar

    [35]

    尚家香, 喻显扬 2008 物理学报 57 2380Google Scholar

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380Google Scholar

    [36]

    尚家香, 于潭波 2009 物理学报 58 1179Google Scholar

    Shang J X, Yu X Y 2009 Acta Phys. Sin. 58 1179Google Scholar

    [37]

    Voigt W 1928 Lehrbuch der Kristallophysik Teuber-Leipzig (New York: Macmillan Publishers)

    [38]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49Google Scholar

    [39]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [40]

    Yang J, Gao F M 2012 Physica B: Condens. Matter 407 3527Google Scholar

    [41]

    Tian Y J, Xu B, Zhao Z H 2012 Int. J. Refract. Met. Hard. Mater 33 93Google Scholar

    [42]

    Niu H Y, Niu S W, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [43]

    Broek D 1982 Elementary Engineering Fracture Mechanics (3rd Ed.) (Netherlands: Martinus Nijhoff Publishers)

    [44]

    Yan X L, Constantin L, Lu Y F, Silvain J F, Nastasi M, Cui B 2018 J. Am. Ceram. Soc. 101 4486Google Scholar

    [45]

    Yu X X, Thompson G B, Weinberger C R 2015 J. Eur. Ceram. Soc. 35 95Google Scholar

    [46]

    Wehr M R, Richards J A, Adair T W 1978 Physics of the Atom (Boston: Addison-Wesley Publishing Company)

    [47]

    Ha D G, Kim J, Han J S, Kang S 2018 Ceram. Int. 44 19247Google Scholar

    [48]

    Vorotilo S, Sidnov K, Mosyagin I Y, Khvan A V, Levashov E A, Patsera E I, Abrikosov I A 2019 J. Alloys Compd. 778 480Google Scholar

    [49]

    Huang B, Duan Y H, Sun Y, Peng M J, Chen S 2015 J. Alloys Compd. 635 213Google Scholar

    [50]

    Weber W 1973 Phys. Rev. B 8 5082Google Scholar

    [51]

    Li H, Zhang L T, Zeng Q F, Guan K, Li K Y, Ren H T, Liu S H, Cheng L F 2011 Solid State Commun. 151 602Google Scholar

    [52]

    Gautam G S, Hari Kumar K C 2014 J. Alloys. Compd. 587 380Google Scholar

    [53]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951Google Scholar

    [54]

    Huang H M, Jiang Z Y and Luo S J 2017 Chin. Phys. B 26 096301Google Scholar

    [55]

    Fahrenholtz W G, Hilmas G E, Talmy I G, Zaykoski J A 2007 J. Am. Ceram. Soc. 90 1347Google Scholar

    [56]

    Ionescu E I, Bernard S, Lucas R, Kroll P, Ushakov S, Navrotsky A, Riedel R 2019 Adv. Eng. Mater. 21 1900269Google Scholar

    [57]

    Pugh S F 1954 Phiosl. Mag.J. Sci. 45 823Google Scholar

    [58]

    Liu Y Z, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 582 500Google Scholar

    [59]

    Jiang X, Zhao J J, Jiang X 2011 Comput. Mater Sci. 50 2287Google Scholar

    [60]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators (Kiev: Naukova Dumka) pp60−180

    [61]

    Yadav D S, Verma J, Singh D P 2016 J. Pure Appl. Ind. Phys. 6 212

    [62]

    Brown H L, Kempter C P 1966 Phys. Stat. Sol. 18 K21Google Scholar

    [63]

    Zhang J, McMahon J M 2021 J. Mater Sci. 56 4266Google Scholar

    [64]

    Feng L, Fahrenholtz W G, Hilmas G E, Watts J, Zhou Y 2019 J. Am. Ceram. Soc. 102 5786Google Scholar

    [65]

    Valenccia D P, Yate L, Aperador W, Li Y G, Coy E 2018 J. Phys. Chem. C 122 25433Google Scholar

    [66]

    Silvestroni L, Pienti L, Guicciardi S, Sciti D 2015 Compos. Part B Eng. 72 10Google Scholar

    [67]

    He L F, Bao Y W, Wang J Y, Li M S, Zhou Y C 2009 Acta. Mater. 57 2765Google Scholar

    [68]

    Leyland A, Matthews A 2000 Wear 246 1Google Scholar

    [69]

    Carlsson A E 1990 Advances in Research and Applications (New York: Academic Press)

    [70]

    Zhou J, Fu C L, Yoo M H, 1995 Phil. Mag. Lett. 71 45Google Scholar

    [71]

    李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105Google Scholar

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta Phys. Sin. 60 117105Google Scholar

    [72]

    Laverntyev A A, Gabrelian B V, Vorzhev V B, Nikiforov I Y, Khyzhun O Y, Rehr J J 2008 J. Alloys Compd. 462 4Google Scholar

  • [1] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] Hu Xue-Lan, Lu Rui-Zhi, Wang Zhi-Long, Wang Ya-Ru. First-principles study on effect of Re on micro structure and mechanical properties of Ni3Al intermetallics. Acta Physica Sinica, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [3] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [8] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [9] Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei. First-principles calculations of the mechanical properties of IrB and IrB2. Acta Physica Sinica, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [10] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [11] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [12] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [13] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [14] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [15] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] Li De-Hua, Zhu Xiao-Ling, Su Wen-Jin, Cheng Xin-Lu. First-principles calculations for the structure and mechanical properties of PtN2. Acta Physica Sinica, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  3974
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2021
  • Accepted Date:  01 March 2021
  • Available Online:  29 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回