Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic field sensing performance of centimeter-scale resonator with optimized structure

Yu Chang-Qiu Ma Shi-Chang Chen Zhi-Yuan Xiang Chen-Chen Li Hai Zhou Tie-Jun

Citation:

Magnetic field sensing performance of centimeter-scale resonator with optimized structure

Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun
PDF
HTML
Get Citation
  • Applications of magnetometers are affected mainly by their sensitivities and detection bandwidths. Till now, the applications of the centimeter-scale optomechanical magnetometer have been still limited by those two factors. In order to improve its sensing performance in a low frequency regime of the alternating current (AC) magnetic field sensor based on centimeter-scale whispering gallery mode resonator, we design a new centimeter-scale crystalline whispering gallery mode resonator which has different relative distributions of the magnetostrictive material (Terfenol-D) and the optical material (CaF2) from the unoptimized centimeter-scale whispering gallery mode resonator. Experimental results show that this new resonator is able to detect the AC magnetic field ranging from 6 Hz to 1 MHz, and a peak sensitivity of 530 pT·Hz–1/2 at 123.8 kHz is achieved without DC bias field in a magnetically unshielded non-cryogenic environment. On condition that the optical quality factor is at the same level of 108 and there is no DC bias magnetic field, the best sensitivity of the optimized resonator is 11 times higher than that of the unoptimized resonator, and the corresponding detection frequency band is expanded by 1.67 times, switching from the frequency band of 10 Hz–600 kHz to 6 Hz–1 MHz. Besides, the device only needs 100 μW light intensity to operate, which offers us a low optical power consumption magnetometer. Within the detection frequency band, the proposed magnetometer can detect both a single frequency alternating magnetic field signal and an alternating magnetic field signal covering a certain frequency range. It can detect 50 or 60 Hz alternating magnetic field signal generated by current in the wire so that the working status of the power system can be monitored. If the sensing performance is further improved, it may be able to detect the magnetic field signal at frequency in a range of 1 kHz–10 MHz generated by the partial discharge current and the extremely low frequency human body magnetic field signal located in a frequency band of [10 mHz–1 kHz]. Further improvement in sensing performance is possible through optimizing the system noise and the magnetic field response capability of the device, which might allow the device to possess the applications in the fields of power system fault monitoring and medical diagnosis.
      Corresponding author: Yu Chang-Qiu, cqyu@hdu.edu.cn ; Zhou Tie-Jun, tjzhou@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805061, 11874135), the Key Research and Development Program of Zhejiang Province (Grant No. 2021C01039),Project of Ministry of Science and Technology (Grant No. D20011), and the Young Scientists Fund of the Natural Science Foundation of Zhejiang Province, China (Grant No. GK200904207023)
    [1]

    Li J, Suh M G, Vahala K 2017 Optica 4 346Google Scholar

    [2]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [3]

    Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801Google Scholar

    [4]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [5]

    Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109Google Scholar

    [6]

    Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206Google Scholar

    [7]

    Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992Google Scholar

    [8]

    Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721Google Scholar

    [9]

    Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003Google Scholar

    [10]

    Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536Google Scholar

    [11]

    Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603Google Scholar

    [12]

    Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015Google Scholar

    [13]

    Tallur S, Bhave S A 2013 Opt. Express 21 1Google Scholar

    [14]

    Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804Google Scholar

    [15]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768Google Scholar

    [16]

    Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465Google Scholar

    [17]

    Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276Google Scholar

    [18]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1Google Scholar

    [19]

    Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1Google Scholar

    [20]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [21]

    Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007Google Scholar

    [22]

    Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558Google Scholar

    [23]

    Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896Google Scholar

    [24]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698Google Scholar

    [25]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510Google Scholar

    [26]

    Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504Google Scholar

    [27]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038

    [28]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147

    [29]

    Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768Google Scholar

    [30]

    Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390UGoogle Scholar

    [31]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [32]

    Yuen H P, Chan V M 1983 Opt. Lett. 8 177Google Scholar

    [33]

    Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264

    [34]

    Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395Google Scholar

    [35]

    Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71Google Scholar

    [36]

    Vrba J, Robinson S E 2001 Methods 25 249Google Scholar

  • 图 1  (a) 改进型谐振腔三维结构示意图, 亮黄色区域: CaF2, 黑色区域: Terfenol-D, 姜黄色区域: 陶瓷; (b)谐振腔的局部放大图和实物图

    Figure 1.  (a) Schematic diagram of the optimized resonator structure; Bright yellow area: CaF2; Black area: Terfenol-D; Ginger area: ceramic; (b) local enlarged image and actual structure image of the resonator.

    图 2  (a) 改进前谐振腔结构的截面图; (b) 改进型谐振腔结构的截面图

    Figure 2.  (a) Cross section of unoptimized resonator structure; (b) cross section of optimized resonator structure.

    图 3  (a) 改进前谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为69.2 kHz, 121.3 kHz, 和138.4 kHz; (b) 改进型谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为72.5 kHz, 123.8 kHz, 和137.5 kHz

    Figure 3.  (a) Finite element modelling (FEM) of mechanical eigenfrequency modes for unoptimized resonator; From left to right, the frequencies are 69.2 kHz, 121.3 kHz and 138.4 kHz, respectively; (b) FEM of mechanical eigenfrequency modes for optimized resonator. From left to right, the frequencies are 72.5 kHz, 123.8 kHz and 137.5 kHz, respectively.

    图 4  光学品质因数测量实验装置图

    Figure 4.  Schematic of the experimental setup for the optical quality factor measurement.

    图 5  归一化的腔透射谱

    Figure 5.  Normalized transmission spectrum of the resonator.

    图 6  磁场传感实验装置图

    Figure 6.  Schematic of the experimental setup for magnetic field sensing.

    图 7  (a) 电光调制频率为15 MHz时的功率谱密度$S\left( \omega \right)$; 绿色峰为280 kHz处的参考磁场信号; 插图: BW = 330 Hz时SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$

    Figure 7.  (a) Power spectral density $S\left( \omega \right)$ with a 15 MHz electro optic modulation frequency, and the highest green peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 330 Hz spectrum analyzer resolution bandwidth; (b) system response $N\left( \omega \right)$.

    图 8  (a) 电光调制频率为13.6 MHz时的功率谱密度$S\left( \omega \right)$, 280 kHz参考磁场频率处有峰值响应; 插图: BW = 10 Hz条件下, SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$

    Figure 8.  (a) Power spectral density $S\left( \omega \right)$ with a 13.6 MHz electro optic modulation frequency, and the highest peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 10 Hz spectrum analyzer resolution bandwidth; (b) system response $N\left( \omega \right)$.

    图 9  改进型谐振腔(黄色曲线)和改进前谐振腔(蓝色曲线)的磁场传感灵敏度

    Figure 9.  Magnetic field sensitivities of optimized resonator and unoptimized resonator.

  • [1]

    Li J, Suh M G, Vahala K 2017 Optica 4 346Google Scholar

    [2]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [3]

    Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801Google Scholar

    [4]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [5]

    Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109Google Scholar

    [6]

    Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206Google Scholar

    [7]

    Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992Google Scholar

    [8]

    Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721Google Scholar

    [9]

    Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003Google Scholar

    [10]

    Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536Google Scholar

    [11]

    Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603Google Scholar

    [12]

    Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015Google Scholar

    [13]

    Tallur S, Bhave S A 2013 Opt. Express 21 1Google Scholar

    [14]

    Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804Google Scholar

    [15]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768Google Scholar

    [16]

    Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465Google Scholar

    [17]

    Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276Google Scholar

    [18]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1Google Scholar

    [19]

    Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1Google Scholar

    [20]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [21]

    Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007Google Scholar

    [22]

    Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558Google Scholar

    [23]

    Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896Google Scholar

    [24]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698Google Scholar

    [25]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510Google Scholar

    [26]

    Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504Google Scholar

    [27]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038

    [28]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147

    [29]

    Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768Google Scholar

    [30]

    Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390UGoogle Scholar

    [31]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [32]

    Yuen H P, Chan V M 1983 Opt. Lett. 8 177Google Scholar

    [33]

    Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264

    [34]

    Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395Google Scholar

    [35]

    Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71Google Scholar

    [36]

    Vrba J, Robinson S E 2001 Methods 25 249Google Scholar

  • [1] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [2] Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Physica Sinica, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] Wang Ya-Jun, Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Zheng Yao-Hui. Transmission characteristics of optical resonator. Acta Physica Sinica, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [4] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] Hou Zhi-Shan, Xu Shuai, Luo Yang, Li Ai-Wu, Yang Han. Femtosecond laser 3D printing temperature sensitive microsphere lasers. Acta Physica Sinica, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo. Laser emission characteristics of the capillary of dye-doped liquid crystal. Acta Physica Sinica, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [8] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [9] Zhang Xing-Di, Wu Yue-Hao, Yang Zheng-Sheng, Dai Shi-Xun, Zhang Pei-Qing, Zhang Wei, Xu Tie-Feng, Zhang Qin-Yuan. Fluorescence whispering gallery modes in Tm3+-doped Ge-Ga-S chalcogenide glasses microsphere-silica fiber taper coupling system. Acta Physica Sinica, 2016, 65(14): 144205. doi: 10.7498/aps.65.144205
    [10] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [11] Guo Ze-Bin, Tang Jun, Liu Jun, Wang Ming-Huan, Shang Cheng-Long, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Yan Shu-Bin. Optical model raciprocity of disk resonator excitated by tapered fiber. Acta Physica Sinica, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [12] Guo Jian-Zeng, Liu Tie-Gen, Niu Zhi-Feng, Ren Xiao-Ming. Numerical simulation of different ratios of oscillator to amplifier of chemical laser with MOPA configuration. Acta Physica Sinica, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [13] Li Shu-Biao, Wu Bao-Jian, Wen Feng, Han Rui. Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber. Acta Physica Sinica, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [14] Shu Fang-Jie. Analysis of features of the microdisk cavity perpendicular coupler. Acta Physica Sinica, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [15] Zhu Kun, Zhou Li, You Hong-Hai, Jiang Nan, Pu Xiao-Yun. The study on the produced length of whispering-gallery-mode fiber laser. Acta Physica Sinica, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [16] Zhang Yuan-Xian, Feng Yong-Li, Zhou Li, Pu Xiao-Yun. Radiation properties of a whispering-gallery-mode fibre laser based on skew light pumping. Acta Physica Sinica, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [17] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [18] Pu Xiao-Yun, Bai Ran, Xiang Wen-Li, Du Fei, Jiang Nan. Two-wavelength-range whispering-gallery-mode fiber laser pumped by evanescent wave. Acta Physica Sinica, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] Zhang Lei, Cai Yang-Jian, Lu Xuan-Hui. Theoretical and experimental study of new dark hollow beams. Acta Physica Sinica, 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
Metrics
  • Abstract views:  3398
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2021
  • Accepted Date:  26 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回