Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Narrow-linewidth coherent population oscillation spectroscopy of room-temperature cesium atomic ensemble

Liu Qiang He Jun Wang Jun-Min

Citation:

Narrow-linewidth coherent population oscillation spectroscopy of room-temperature cesium atomic ensemble

Liu Qiang, He Jun, Wang Jun-Min
PDF
HTML
Get Citation
  • Coherent population oscillations spectroscopy, which is based on the interaction between atoms and the phase locked laser, is a kind of atomic population modulation spectroscopy. When the laser frequency difference is less than natural width of energy level, the coherent oscillation of atomic population will be induced by laser intensity modulation so that the probe laser transmission with narrow bandwidth can be realized. For a closed two-level system (TLS), the spectral line-width is limited mainly by the spontaneous emission lifetime of the upper atomic energy level. As for a three-level atomic system of Λ configuration, the two linearly polarized beams with both σ+ and σ- polarization component, the laser-atom interaction satisfies the selection rule. The spectral line-width mainly depends on the ground-state relaxation time, and the dependence on the line-width of spontaneous radiation is eliminated. In this paper, the laser from a external-cavity diode laser has its frequency locked to Cesium $6{{\rm{S}}_{1/2}}\left( {F = 3} \right) \to 6{{\rm{P}}_{3/2}}\left( {F' = 3} \right)$ transition. The frequencies of the two beams are shifted down by two independent double-passed acousto-optic modulators (AOM) to nearly resonate to Cesium $6{{\rm{S}}_{1/2}}\left( {F = 3} \right) \to 6{{\rm{P}}_{3/2}}\left( {F' = 2} \right)$ transition. The probe beam and the coupling beam are superposed at polarization beam splitter (PBS) cube and transmitted through the magnetically shielded cesium vapor cell in the same direction. The two beams have approximately the same Gaussian diameter of 6.6 mm. The beams are separated by another PBS behind the vapor cell, and the probe beam is detected by a photodiode. We realize the coherent population oscillation spectroscopy through the Cesium vapor cell at room temperature without buffer gas. The spectral linewidth is typically less than 50 kHz which is far below the spontaneous radiation linewidth(~5.2 MHz). The linewidth of coherent population oscillation spectroscopy of the Λ-type atomic energy level structure depends only on the population associated with the oscillation of multiple degenerate level systems except phase correlations of atomic states. Coherent population oscillation is beneficial to the obtaining of the narrow linewidth spectroscopy through the Rydberg atomic system with long excited state lifetime. Considering the importance of electric field measurement using Rydberg atoms, the method of coherent population oscillation can be used to improve the sensitivity of precise measurements based on Rydberg atoms.
      Corresponding author: He Jun, hejun@sxu.edu.cn ; Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875111, 11974226, 11774210), the National Basic Research Program of China (Grant No. 2017YFA0304502), and the 1331Project for Key Subject Construction of Shanxi Province, China
    [1]

    Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B, Guo H 2020 Sci. Adv. 6 eaba8792Google Scholar

    [2]

    Sheng J W, Wan S A, Sun Y F, Dou R S, Guo Y H, Wei K Q, He K Y, Qin J, Gao J H 2017 Rev. Sci. Instrum. 88 094304Google Scholar

    [3]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [4]

    Schmittberger B L 2020 Opt. Express 28 38169Google Scholar

    [5]

    Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar

    [6]

    Wilson K, Little B, Gariepy G, Henderson R, Howell J, Faccio D 2017 Phys. Rev. A 95 023830Google Scholar

    [7]

    Raczyński A, Zaremba J, Zielińska-Kaniasty S 2004 Phys. Rev. A 69 043801Google Scholar

    [8]

    Nagel A, Graf L, Naumov A, Mariotti E, Biancalana V, Meschede D, Wynands R 1998 Europhys Lett. 44 31Google Scholar

    [9]

    Liu L, Guo T, Deng K, Liu X Y, Chen X Z 2007 Chin. Phys. Lett. 24 1883Google Scholar

    [10]

    Ryzhov I I, Kozlov G G, Smirnov D S, Glazov M M, Efimov Y P, Eliseev S A, Lovtcius V A, Petrov V V, Kavokin K V, Kavokin A V, Zapasskii V S 2016 Sci. Rep. 6 21062Google Scholar

    [11]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [12]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [13]

    Böhi P, Riedel M F, Hänsch T W, Treutlein P 2010 Appl. Phys. Lett. 97 051101Google Scholar

    [14]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar

    [15]

    Klein M, Novikova I, Phillips D F, Walsworth R L 2006 J. Mod. Opt. 53 2583Google Scholar

    [16]

    Skvortsov M N, Ignatovich S M, Vishnyakov V I, Kvashnin N L, Mesenzova I S, Brazhnikov D V, Vasil'ev V A, Taichenachev A V, Yudin V I, Bagayev S N, Blinov I Y, Pal'chikov V G, Samokhvalov Y S, Parekhin D A 2020 Quantum Electron. 50 576Google Scholar

    [17]

    Baryshev V N, Osipenko G V, Aleinikov M S Blinov I Y 2019 Quantum Electron. 49 283Google Scholar

    [18]

    Thoumany P, Hänsch T, Stania G, Urbonas L, Becker T 2009 Opt. Lett. 34 1621Google Scholar

    [19]

    Li B, Li M, Jiang X J, Qian J, Li X L, Liu L, Wang Y Z 2019 Phys. Rev. A 99 042502Google Scholar

    [20]

    Maynard M A, Bretenaker F, Goldfarb F 2014 Phys. Rev. A 90 061801Google Scholar

    [21]

    Laupretre T, Kumar S, Berger P, Faoro R, Ghosh R, Bretenaker F, Goldfarb F 2012 Phys. Rev. A 85 051805Google Scholar

    [22]

    Almeida A J F, Barreiro S, Martins W S, Oliveira R A, Pruvost L, Felinto D, Tabosa J W R 2015 Opt. Lett. 40 2545Google Scholar

    [23]

    Almeida A J F, Sales J, Maynard M A, Lauprêtre T, Bretenaker F, Felinto D, Goldfarb F, Tabosa J W R 2014 Phys. Rev. A 90 043803Google Scholar

  • 图 1  铯原子系综相干布居振荡光谱 (a)铯原子超精细跃迁及Zeeman能级结构; (b)二能级结构; (c)三能级结构

    Figure 1.  Schematic diagram of cesium atomic ensemble coherent population oscillations spectroscopy: (a) Hyperfine levels and Zeeman sublevels of the cesium D2 line; (b) two-level system and (c) three-level system associated with Zeeman sublevels of the ground and excited states.

    图 2  (a)理论计算二能级模型与(b)三能级模型的透射线型

    Figure 2.  Calculated transmission lines of (a) the two-level model and (b) the three-level model.

    图 3  铯原子系综相干布居振荡光谱测量的实验装置示意图. PBS, 偏振分束棱镜; AOM, 声光调制器; PD, 光电二极管

    Figure 3.  Schematic diagram of experimental setup for measuring cesium atomic ensemble coherent population oscillations spectrum. PBS, polarizing beam splitter; AOM, acousto-optic modulator; PD, photodiode.

    图 4  典型的铯原子相干布居振荡光谱, 虚线为Lorentz拟合

    Figure 4.  Coherent population oscillations spectrum of cesium atoms.

    图 5  不同磁场方向, 光场k方向, 不同原子能级构型的光偏振组合 (a) $ \sigma ^+-\sigma ^+$构型; (b) $ \sigma ^+-\sigma ^-$构型; (c) $ \pi -\pi $构型

    Figure 5.  Energy-level scheme for the interaction of the cesium D2 line with different laser polarization and magnetic fields: (a) $ \sigma ^+-\sigma ^+$; (b) $ \sigma ^+-\sigma ^-$; (c) $ \pi -\pi $.

    图 6  探测光不同偏振状态时磁场环境中的CPO和EIT光谱 (a)线偏振光, (151 ± 9) kHz (红线), (312 ± 11) kHz (蓝线), (460 ± 25) kHz (绿线); (b)$ {\sigma ^ + }$圆偏振光, (153 ± 9) kHz (黑线), (314 ± 11) kHz (红线), (475 ± 25) kHz (蓝线); (c)$ {\sigma ^ - }$圆偏振光, (–155 ± 7) kHz (黑线), (–309 ± 15) kHz (红线), (–474 ± 22) kHz (蓝线)

    Figure 6.  Coherent population oscillations spectrum in magnetic field with different polarzaiton of probe beam: (a) linear polarization, (151 ± 9) kHz (red), (312 ± 11) kHz (blue), (460 ± 25) kHz (green); (b) $ {\sigma ^ + }$ circular polarization, (153 ± 9) kHz (black), (314 ± 11) kHz (red), (475 ± 25) kHz (blue); (c)$ {\sigma ^ - }$ circular polarization, (–155 ± 7) kHz (black), (–309 ± 15) kHz (red), (–474 ± 22) kHz (blue).

    图 7  不同功率下铯原子相干布居振荡光谱的幅度与线宽

    Figure 7.  Amplitude and linewidth of coherent population oscillations spectroscopy of cesium atoms with different power.

  • [1]

    Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B, Guo H 2020 Sci. Adv. 6 eaba8792Google Scholar

    [2]

    Sheng J W, Wan S A, Sun Y F, Dou R S, Guo Y H, Wei K Q, He K Y, Qin J, Gao J H 2017 Rev. Sci. Instrum. 88 094304Google Scholar

    [3]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [4]

    Schmittberger B L 2020 Opt. Express 28 38169Google Scholar

    [5]

    Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar

    [6]

    Wilson K, Little B, Gariepy G, Henderson R, Howell J, Faccio D 2017 Phys. Rev. A 95 023830Google Scholar

    [7]

    Raczyński A, Zaremba J, Zielińska-Kaniasty S 2004 Phys. Rev. A 69 043801Google Scholar

    [8]

    Nagel A, Graf L, Naumov A, Mariotti E, Biancalana V, Meschede D, Wynands R 1998 Europhys Lett. 44 31Google Scholar

    [9]

    Liu L, Guo T, Deng K, Liu X Y, Chen X Z 2007 Chin. Phys. Lett. 24 1883Google Scholar

    [10]

    Ryzhov I I, Kozlov G G, Smirnov D S, Glazov M M, Efimov Y P, Eliseev S A, Lovtcius V A, Petrov V V, Kavokin K V, Kavokin A V, Zapasskii V S 2016 Sci. Rep. 6 21062Google Scholar

    [11]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [12]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [13]

    Böhi P, Riedel M F, Hänsch T W, Treutlein P 2010 Appl. Phys. Lett. 97 051101Google Scholar

    [14]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar

    [15]

    Klein M, Novikova I, Phillips D F, Walsworth R L 2006 J. Mod. Opt. 53 2583Google Scholar

    [16]

    Skvortsov M N, Ignatovich S M, Vishnyakov V I, Kvashnin N L, Mesenzova I S, Brazhnikov D V, Vasil'ev V A, Taichenachev A V, Yudin V I, Bagayev S N, Blinov I Y, Pal'chikov V G, Samokhvalov Y S, Parekhin D A 2020 Quantum Electron. 50 576Google Scholar

    [17]

    Baryshev V N, Osipenko G V, Aleinikov M S Blinov I Y 2019 Quantum Electron. 49 283Google Scholar

    [18]

    Thoumany P, Hänsch T, Stania G, Urbonas L, Becker T 2009 Opt. Lett. 34 1621Google Scholar

    [19]

    Li B, Li M, Jiang X J, Qian J, Li X L, Liu L, Wang Y Z 2019 Phys. Rev. A 99 042502Google Scholar

    [20]

    Maynard M A, Bretenaker F, Goldfarb F 2014 Phys. Rev. A 90 061801Google Scholar

    [21]

    Laupretre T, Kumar S, Berger P, Faoro R, Ghosh R, Bretenaker F, Goldfarb F 2012 Phys. Rev. A 85 051805Google Scholar

    [22]

    Almeida A J F, Barreiro S, Martins W S, Oliveira R A, Pruvost L, Felinto D, Tabosa J W R 2015 Opt. Lett. 40 2545Google Scholar

    [23]

    Almeida A J F, Sales J, Maynard M A, Lauprêtre T, Bretenaker F, Felinto D, Goldfarb F, Tabosa J W R 2014 Phys. Rev. A 90 043803Google Scholar

  • [1] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectroscopy of cesium Rydberg atoms in radio-frequency fields. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240355
    [2] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [3] Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming. nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [4] Fan Jia-Bei, Hao Li-Ping, Bai Jing-Xu, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. High-sensitive microwave sensor and communication based on Rydberg atoms. Acta Physica Sinica, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [5] nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211458
    [6] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [7] Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. Broadband Rydberg atom-based radio-frequency field sensor. Acta Physica Sinica, 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [8] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [9] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [10] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [11] Wang Li-Mei, Zhang Hao, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Observation of the avoided crossing of Cs Rydberg Stark states. Acta Physica Sinica, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [12] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [13] Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min. Investigation of experimental parameters of coherent population trapping with cesium vapor cell. Acta Physica Sinica, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [14] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [15] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [16] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [17] Meng Hui-Yan, Kang Shuai, Shi Ting-Yun, Zhan Ming-Sheng. Model potential calculations of oscillator strength spectra of lithium atoms in parallel electric and magnetic fields. Acta Physica Sinica, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [18] Piao Hong-Guang, Ma Xiao-Ping, Zhang Shou. Modeling the evolution of atomic population of two different atoms interacting in two-mode cavity field. Acta Physica Sinica, 2007, 56(9): 5237-5242. doi: 10.7498/aps.56.5237
    [19] Song Jun, Cao Zhuo-Liang. Dynamical properties in the system of two identical two-level entangled atoms interacting with radiation fields in binomial states. Acta Physica Sinica, 2005, 54(2): 696-702. doi: 10.7498/aps.54.696
    [20] HUANG CHUN-JIA, ZHOU MING, LIU AN-LING. DYNAMICS OF TWO COUPLED ATOMS RAMAN-INTERACTING WITH SQUEEZED VACUUM FIELD. Acta Physica Sinica, 2001, 50(6): 1064-1069. doi: 10.7498/aps.50.1064
Metrics
  • Abstract views:  3846
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2021
  • Accepted Date:  07 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回