Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on dual-optical paths for simultaneous measurement method of water vapor absorption spectrum in 1 μm band

Zheng Jian-Jie Zhu Wen-Yue Liu Qiang Ma Hong-Liang Liu Kun Qian Xian-Mei Chen Jie Yang Tao

Citation:

Study on dual-optical paths for simultaneous measurement method of water vapor absorption spectrum in 1 μm band

Zheng Jian-Jie, Zhu Wen-Yue, Liu Qiang, Ma Hong-Liang, Liu Kun, Qian Xian-Mei, Chen Jie, Yang Tao
PDF
HTML
Get Citation
  • Based on the gas multi-pass absorption cell with dual-optical paths (long optical path: 72.46 m; short optical path: 36.23 m), a measurement method of simultaneously detecting water vapor absorption spectra is advanced. Combining with a narrow line-width external cavity diode laser and a high-precision Fabry-Perot etalon, a high-resolution simultaneous measurement device with dual-optical paths for water vapor absorption spectra in 1 μm band is developed. Since the external cavity diode laser has excellent polarization characteristics which could be combined with a half-wave plate and a polarization beam splitter to implement the laser transmissions in dual-optical paths simultaneously. Both the multi-pass absorption cell and the Fabry-Perot etalon in the measurement device have pressure and temperature control units, which are utilized for achieving ambient stability. The free spectral range of Fabry-Perot etalon is accurately measured by the method of optical comb frequency. Corresponding free spectral range with a deviation of only 0.02 % from the theoretical value is obtained to be a value of 749.52 MHz, and the influence of temperature on the frequency shift of etalon is less than 1 % of the measured value. The stability of the pressure and the temperature in the dual-optical path gas multi-pass absorption cell in the system are evaluated in detail, and the calculated relative errors are not more than 0.03 % and 0.02 %, respectively. At a temperature of 300 K, the system is used to measure the absorption spectra of water vapor at 9152.53 cm–1 from 400 Pa to 2000 Pa on dual-optical paths, then the integrated absorbance and Lorentzian line-width of water vapor for long optical path and short optical path are inverted by fitting absorption spectra with Voigt profile respectively. The absorption line intensities and self-broadening coefficients are acquired by performing linear fitting to the integrated absorbance and Lorentzian line-width under different pressures. And the relative deviations of the average values of the dual-optical path absorption line intensities (converted to the reference temperature of 296 K) and the self-broadening coefficients and the corresponding data of the HITRAN2016 database are 0.78 % and 3.8 %, respectively. Consequently, the feasibility of the dual-optical path simultaneous measurement method and the reliability of the measurement device are demonstrated by the results.
      Corresponding author: Zhu Wen-Yue, zhuwenyue@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41805014), the Foundation of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. 20191002), the Key Program of the Youth Talent Support Plan in Universities of Anhui Province, China (Grant No. gxyqZD2020032), the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA17010104), and the Open Research Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences (Grant No. JJ-19-01)
    [1]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar

    [2]

    Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar

    [3]

    Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar

    [4]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)

    [5]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar

    [6]

    朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar

    Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar

    [7]

    Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar

    [8]

    Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar

    [9]

    Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar

    [10]

    Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar

    [11]

    Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar

    [12]

    Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar

    [13]

    Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar

    [14]

    Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar

    [15]

    Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar

    [16]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [17]

    Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar

    [18]

    Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar

    [19]

    鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar

    [20]

    孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar

    Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar

    [21]

    闫露露 2014硕士学位论文(西安: 陕西科技大学)

    Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)

    [22]

    杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224

    Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224

    [23]

    Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar

    [24]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Sketch of the experimental setup.

    图 2  吸收池结构示意图 (a)吸收池的正面; (b)吸收池的背面

    Figure 2.  Schematics of absorption cell structure: (a) Front of the absorption cell; (b) back of the absorption cell.

    图 3  He-Ne激光器在反射镜上的长光程(外圈与中圈)和短光程(内圈)实际光斑

    Figure 3.  The actual spots of long optical path (outer circle and middle circle) and short optical path (inner circle) of He-Ne laser on the mirror.

    图 4  70 h内的多通吸收池中压力变化图

    Figure 4.  Pressure change in the multi-pass absorption cell in 70 h.

    图 5  1.5 h内激光器与光梳拍频信号(fb)的频率变化

    Figure 5.  Frequency variation of the beat signal (fb) between the laser and the optical comb within 1.5 h.

    图 6  同时记录的光谱示例 (a)短光程水分子吸收信号; (b)长光程水分子吸收信号; (c)F-P标准具纵模信号

    Figure 6.  Examples of spectra recorded simultaneously: (a) Short optical path water vapor absorption signal; (b) long optical path water vapor absorption signal; (c) the longitudinal mode signal of F-P etalon.

    图 7  (a), (b)在长光程中9152.53 cm–1处纯水分子的吸收系数和拟合残差; (c), (d)在短光程中纯水分子在相同光谱线位置的吸收系数和拟合残差

    Figure 7.  (a), (b) Absorption coefficient and fitting residual of water vapor at 9152.53 cm–1 in long optical path; (c), (d) absorption coefficients and fitting residuals of pure water vapor at the same spectral line position in a short optical path.

    图 8  温度300 K时, 水分子在9152.53 cm–1处单位距离上的积分吸光度与粒子数浓度的线性拟合结果及其拟合残差(左上角小图显示了3.626 × 1017 molecule·cm–3下5组单位距离上积分吸光度平均后的标准差. 因标准差过小, 主图上未完全显示)

    Figure 8.  At a temperature of 300 K, the linear fitting results and fitting residual errors of the integrated absorbance per unit distance of water vapor at 9152.53 cm–1 against the particle number concentration. (The minor image in the upper left corner shows the average standard deviation of the integrated absorbance of the 5 groups of unit distances under 3.626 × 1017 molecule·cm–3. However, the standard deviation is so small that it is not fully displayed on the main image)

    图 9  300 K时, 9152.53 cm–1处水分子洛伦兹线宽与压力的线性拟合结果

    Figure 9.  At a temperature of 300 K, the linear fitting result of the Lorentzian line width against pressure of water vapor at 9152.53 cm–1.

    表 1  296 K温度下9153 cm–1处各参数与其对线强不确定度的贡献

    Table 1.  Parameters at 9153 cm–1 and their contribution to the uncertainty of line intensityat 296 K.

    参数参数值相对不确
    定度/%
    对线强不确定度的贡献/%
    Afit0.01126542 cm–10.01499.9746
    kw10.720.0127
    T300 K0.017~0
    KT1.011390.028
    V2.6 L00
    P397.3 Pa0.025~0
    L7246 cm0.13~0
    qleak4.54 × 10–4 Pa·L·s–10.003~0
    riso0.99730.010.0127
    S1.6435 × 10–23 cm·molecule–10.74
    DownLoad: CSV
  • [1]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar

    [2]

    Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar

    [3]

    Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar

    [4]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)

    [5]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar

    [6]

    朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar

    Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar

    [7]

    Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar

    [8]

    Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar

    [9]

    Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar

    [10]

    Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar

    [11]

    Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar

    [12]

    Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar

    [13]

    Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar

    [14]

    Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar

    [15]

    Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar

    [16]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [17]

    Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar

    [18]

    Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar

    [19]

    鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar

    [20]

    孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar

    Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar

    [21]

    闫露露 2014硕士学位论文(西安: 陕西科技大学)

    Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)

    [22]

    杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224

    Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224

    [23]

    Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar

    [24]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • [1] Peng Xiang, Liu En-Hai, Tian Shu-Lin, Fang Liang. A compound optical path difference phase-shift solution method based on Doppler asymmetric spatial heterodyne spectral velocimetry. Acta Physica Sinica, 2022, 71(24): 240601. doi: 10.7498/aps.71.20221469
    [2] Yang Tao, Qian Xian-Mei, Ma Hong-Liang, Liu Qiang, Zhu Wen-Yue, Zheng Jian-Jie, Chen Jie, Xu Qiu-Yi. CO2-broadened coefficients of water vapor molecule in 1.1 μm band. Acta Physica Sinica, 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [3] Zhang Xiao-An, Mei Ce-Xiang, Zhang Ying, Liang Chang-Hui, Zhou Xian-Ming, Zeng Li-Xia, Li Yao-Zong, Liu Yu, Xiang Qian-Lan, Meng Hui, Wang Yi-Jun. 129Xeq+ induced near-infrared light and X-ray emission at Cu surface. Acta Physica Sinica, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [4] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [5] Wu Yi-Qing, Liu Jin, Mo Xin-Xin, Sun Tong, Liu Mu-Hua. Quantitative analysis of chromium in vegetable oil by collinear double pulse laser-induced breakdown spectroscopy combined with dual-line internal standard method. Acta Physica Sinica, 2017, 66(5): 054206. doi: 10.7498/aps.66.054206
    [6] Li Jin-Hua, Wang Zhao-Ba, Wang Zhi-Bin, Zhang Min-Juan, Cao Jun-Qin. Study on the temperature dependence of oxygen A-band absorption coefficient. Acta Physica Sinica, 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [7] Peng Zhi-Min, Ding Yan-Jun, Zhai Xiao-Dong. Measurements of rotational and vibrational temperatures based on flame emission spectroscopy. Acta Physica Sinica, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [8] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [9] Liu Shuo, Chen Gao, Chen Ji-Gen, Zhu Qi-Ren. Increasing line-density of high-order harmonic generation spectra with bichromatic fields. Acta Physica Sinica, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [10] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [11] Chen Zi-Lun, Zhou Pu, Xu Xiao-Jun, Hou Jing, Jiang Zong-Fu. The influence of spectral lines and coupling coefficient on mutual injection locking of fiber lasers. Acta Physica Sinica, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [12] Zheng Rui-Lun, Wu Qiang. High-energy level linear Stark effect in CdS/HgS/CdS spherical nanometric system. Acta Physica Sinica, 2008, 57(12): 7841-7847. doi: 10.7498/aps.57.7841
    [13] YUAN XIAN-ZHANG, PEI HUI-YUAN, LU WEI, LI NING, SHI GUO-LIANG, FANG JIA-XIONG, SHEN XUE-CHU. INFRAREDPHOTOCONDUCTIVITYSPECTRAOFDEEPLEVELS IN Zn0.04Cd0.96Te. Acta Physica Sinica, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [14] YANG CHUAN-LU, ZHU ZHENG-HE. THEORETICAL CALCULATION OF PRESSURE-BROADENED CROSS SECTION FOR PURE ROTATIONAL DIPOLE TRANSITION OF Hel IN Ar. Acta Physica Sinica, 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [15] SHEN XUE-CHU, CHU JUN-HAO. FAR INFRARED SPECTRAL STUDY OF THE PHONON STATES OF THE MIXED CRYSTALS CdxHg1-x Te. Acta Physica Sinica, 1984, 33(6): 729-737. doi: 10.7498/aps.33.729
    [16] GAN ZI-ZHAO, YANG GUO-ZHEN. ON THE THIRD ORDER OPTICAL NONLINEARITY NEAR EXCITON LINES. Acta Physica Sinica, 1982, 31(4): 503-509. doi: 10.7498/aps.31.503
    [17] ZHENG JIAN-SHENG. MEASUREMENT OF MINUTE RADIOMETRIC QUANTITIES IN THE SPECTRAL RANGE FROM VISIBLE TO NEAR INFRA-RED. Acta Physica Sinica, 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
    [18] PAN CHEN-HUA, CHIEN JEN-YUAN. ON THE INFRARED SPECTRA OF POLYCAPROLACTAM. Acta Physica Sinica, 1962, 18(3): 159-164. doi: 10.7498/aps.18.159
    [19] . Acta Physica Sinica, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
    [20] HO I-DJEN, HSU SHENG-MEI. THE RELATION BETWEEN SPECTRAL LINE INTENSITY AND CONCENTRATION OF THE CONSTITUENT IN THE PRESENCE OF SELF-ABSORPTION. Acta Physica Sinica, 1958, 14(1): 54-63. doi: 10.7498/aps.14.54
Metrics
  • Abstract views:  4516
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2021
  • Accepted Date:  22 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回