Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm

Zhang Hai-Peng Zhao Chang-Zhe Ju Xiao-Lu Tang Jie Xiao Ti-Qiao

Citation:

Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm

Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao
PDF
HTML
Get Citation
  • X-ray ghost imaging is a low-dose, non-localized imaging method, which is of great significance in medical diagnosis and biological imaging. In crystal diffraction based X-ray ghost imaging, the blurring patterns in the diffracted beam, caused by the crystal vibration, can result in a reduction in the contrast and spatial resolution of the reconstructed imaged by ensemble average. In the paper, we systematically analyze the influence of the blurring degree of the speckle patterns from the diffracted beam on the normalized second-order intensity correlation function $ {g}^{\left(2\right)} $ numerically and theoretically. Both demonstrates that as the blurring degree increases, the maximum value of $ {g}^{\left(2\right)} $ decreases and the full width at half maximum broadens, which theoretically proves the blurring degree relating to image quality. In order to solve the above problem, in the paper we propose a $ {G}_{\mathrm{L}\mathrm{H}} $ enhanced ($ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $) method to optimize the image quality based on the scheme ($ {G}_{\mathrm{L}\mathrm{H}} $) which directly correlates the bucket signals in diffracted beam with the high-definition patterns in transmitted beam. The simulation experiments exhibit that the $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ method can improve both the image contrast and the spatial resolution simultaneously. As the blurring degree increases, the difference between the peak signal-to noise ratio of the reconstructed image by the iterative method and that by the scheme $ {(G}_{\mathrm{L}\mathrm{L}}) $ which preprocess the speckle patterns in the transmitted beam through Gaussian filtering, becomes greater. Furthermore, the ${G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ is almost immune to the additive noise. In summary, the present study provides a feasible idea for the practical application of X-ray ghost imaging based on crystal diffraction.
      Corresponding author: Zhang Hai-Peng, zhanghaipeng@sinap.ac.cn ; Xiao Ti-Qiao, xiaotiqiao@zjlab.org.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0206004, 2017YFA0206002, 2018YFC0206002, 2017YFA0403801) and the National Natural Science Foundation of China (Grant No. 81430087).
    [1]

    Bennink R S, Bentley S J, Boyd R W, Howell J C 2004 Phys. Rev. Lett. 92 033601Google Scholar

    [2]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [3]

    Valencia A, Scarcelli G, D’Angelo M, Shih Y 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [4]

    Pittman T, Shih Y, Strekalov D, Sergienko A 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [6]

    Chan K W C, O'Sullivan M N, Boyd R W 2009 Opt. Lett. 34 3343Google Scholar

    [7]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [8]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600Google Scholar

    [9]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [10]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Rev. A 378 3406

    [11]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [12]

    Shi D, Fan C, Zhang P, Zhang J, Shen H, Qiao C, Wang Y 2012 Opt. Express 20 27992Google Scholar

    [13]

    李明飞, 阎璐, 杨然, 寇军, 刘院省 2019 物理学报 68 094204Google Scholar

    Li M F, Yan L, Yang R, Kou J, Liu Y X 2019 Acta Phys. Sin. 68 094204Google Scholar

    [14]

    Oh J E, Cho Y W, Scarcelli G, Kim Y H 2013 Opt. Lett. 38 682Google Scholar

    [15]

    Zhao C, Gong W, Chen M, Li E, Wang H, Wendong X, Han A 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [16]

    Ma S, Liu Z, Wang C, Hu C, Li E, Gong W, Tong Z, Wu J, Shen X, Han S 2019 Opt. Express 27 13219Google Scholar

    [17]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [18]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602Google Scholar

    [19]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144Google Scholar

    [20]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [21]

    Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V, Wu L A 2010 Opt. Lett. 35 1166Google Scholar

    [22]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695Google Scholar

    [23]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [24]

    Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U, Paganin D M 2020 Phys. Rev. A 101 053844Google Scholar

    [25]

    Pelliccia D, Olbinado M, Rack A, Kingston A, Myers G, Paganin D 2018 IUCrJ 5 428Google Scholar

    [26]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [27]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [28]

    Klein Y, Schori A, Dolbnya I P, Sawhney K, Shwartz S 2019 Opt. Express 27 3284Google Scholar

    [29]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [30]

    Schori A, Borodin D, Tamasaku K, Shwartz S 2018 Phys. Rev. A 97 063804Google Scholar

    [31]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [32]

    Yu H, Lu R, Han S, Xie H, Du G, Xiao T, Zhu D 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [33]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [34]

    孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701Google Scholar

    Sun H F, Bao F W, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [35]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴 令安, 翟光杰 2013 物理学报 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [36]

    Zhao C Z, Si S Y, Zhang H P, Xue L , Li Z L, Xiao T Q 2021 Acta Phys. Sin. 70Google Scholar

  • 图 1  基于晶体衍射分光的X射线鬼成像示意图

    Figure 1.  Schematic diagram of X-ray ghost imaging based on the beam splitter of crystal diffraction.

    图 2  一致性和模糊程度关系

    Figure 2.  Consistency vs ambiguity.

    图 3  $ \sigma =1.3 $时光强归一化二阶关联的理论和模拟在x方向上的曲线图 (a) $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}\mathrm{和}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $的模拟在x方向上的曲线图; (b) ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $$ \mathrm{和}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$的理论在x方向上的曲线图

    Figure 3.  The theoretical and simulated curves of the normalized second-order correlation of light intensity in x direction when $ \sigma =1.3: $ (a) The simulated curves of $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $ and $ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $ in x direction; (b) the theoretical curves of $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $ and $ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $ in x direction.

    图 4  $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $$ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $在理论和模拟上随模糊程度$ \sigma $的变化曲线图 (a) $ {\mathrm{g}}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $${g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$在理论和模拟的最大值随$ \sigma $的变化; (b) $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $${g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$在理论和模拟的半高全宽随$ \sigma $的变化

    Figure 4.  ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}~\mathrm{and}~{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with the blur degree $ \sigma $ in theory and simulation: (a) The theoretical and simulated maximum of ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}\mathrm{~and~}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with $ \sigma $; (b) the FWHM of ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}~\mathrm{and}~{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with $ \sigma $ in theory and simulation.

    图 5  ${G}_{\mathrm{L}\mathrm{L}} $$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法重构图像 (a) 物体图像; (b)—(f) 不同标准差($ \sigma $ = 0.7, 1.0, 1.3, 1.6, 1.9)时$ {G}_{\mathrm{L}\mathrm{L}} $恢复的图像; (g)$ {G}_{\mathrm{H}\mathrm{H}} $重构的图像; (h)—(l) 不同标准差($ \sigma $ = 0.7, 1.0, 1.3, 1.6, 1.9)时$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法恢复的图像.

    Figure 5.  Images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $and iterative method: (a) The object image; (b)-(f) the images are retrieved by $ {G}_{\mathrm{L}\mathrm{L}} $ with $ \sigma $ set as 0.7, 1.0, 1.3, 1.6, 1.9; (g) the image restored by $ {G}_{\mathrm{H}\mathrm{H}} $; (h)-(l) the images are reconstructed by iterative method when $ \sigma $ is 0.7, 1.0, 1.3, 1.6, 1.9.

    图 6  不同算法重构图像的PSNR随模糊衬度的变化曲线

    Figure 6.  The PSNR curves of reconstructed images with different algorithms vary with blur degree.

    图 7  $ {G}_{\mathrm{L}\mathrm{L}} $$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法重构图像中间部位的截面轮廓线:(a) 黑线是物体的截面轮廓线, 即图5(a)中间区域的平均灰度变化, 其余分别是$ {G}_{\mathrm{L}\mathrm{L}} $方法在$ \sigma $为0.7, 1.0, 1.3, 1.6, 1.9时重构图像的截面轮廓线, 即图5(b)图5(f)的中间区域的平均灰度变化; (b) 黑线是GHH重构图像的截面轮廓线, 即图5(g)中间区域的平均灰度变化, 其余是$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法在$ \sigma $为0.7, 1.0, 1.3, 1.6, 1.9时重构图像的截面轮廓线,即图5(h)图5(l)的中间区域的平均灰度变化.

    Figure 7.  Line profiles of the middle parts in the reconstructed images by $ {G}_{\mathrm{L}\mathrm{L}} $ and $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $: (a) The black curve is the line profile of the object, that is the mean grayscale change of the middle part in Fig. 5(a), and the rest is the line profiles of the images retrieved by $ {G}_{\mathrm{L}\mathrm{L}} $ with $ \sigma $ set as 0.7, 1.0, 1.3, 1.6, 1.9, that is, the mean grayscale change of the middle part in Fig. 5(b) to Fig. 5(f); (b) the black curve is the line profile of the image retrieved by $ {G}_{\mathrm{H}\mathrm{H}} $, that is the mean grayscale change of the middle part in Fig. 5(g), and the rest is the line profiles of the images restored by $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ when $ \sigma $ is 0.7, 1.0, 1.3, 1.6, 1.9, that is, the mean grayscale change of the middle part in Fig. 5(h) to Fig. 5(l).

    图 8  $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $在不同噪声下重构图像: (a), (g), (m) 无噪声时$ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $重构的图像; (b)—(f) $ {\mathrm{G}}_{\mathrm{L}\mathrm{L}} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像; (i)—(l) $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像; (n)—(r) $ {G}_{\mathrm{H}\mathrm{H}} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像

    Figure 8.  Images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ under different noise: (a), (g), (m) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ without noise; (b)–(f) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively; (i)–(l) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively; (n)–(r) the images reconstructed by $ {G}_{\mathrm{H}\mathrm{H}} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively.

    图 9  $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $在不同噪声下重构图像的PSNR, 其中标准差$ {\sigma }_{\mathrm{N}} $为0表示没有噪声(此时噪声均值$ {\mu }_{\mathrm{N}} $也为0)

    Figure 9.  PSNRs of images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ under different noise, where the standard deviation $ {\sigma }_{\mathrm{N}} $of 0 indicates there is no noise (at this time the mean $ {\mu }_{\mathrm{N}} $ of noise is also 0).

  • [1]

    Bennink R S, Bentley S J, Boyd R W, Howell J C 2004 Phys. Rev. Lett. 92 033601Google Scholar

    [2]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [3]

    Valencia A, Scarcelli G, D’Angelo M, Shih Y 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [4]

    Pittman T, Shih Y, Strekalov D, Sergienko A 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [6]

    Chan K W C, O'Sullivan M N, Boyd R W 2009 Opt. Lett. 34 3343Google Scholar

    [7]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [8]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600Google Scholar

    [9]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [10]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Rev. A 378 3406

    [11]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [12]

    Shi D, Fan C, Zhang P, Zhang J, Shen H, Qiao C, Wang Y 2012 Opt. Express 20 27992Google Scholar

    [13]

    李明飞, 阎璐, 杨然, 寇军, 刘院省 2019 物理学报 68 094204Google Scholar

    Li M F, Yan L, Yang R, Kou J, Liu Y X 2019 Acta Phys. Sin. 68 094204Google Scholar

    [14]

    Oh J E, Cho Y W, Scarcelli G, Kim Y H 2013 Opt. Lett. 38 682Google Scholar

    [15]

    Zhao C, Gong W, Chen M, Li E, Wang H, Wendong X, Han A 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [16]

    Ma S, Liu Z, Wang C, Hu C, Li E, Gong W, Tong Z, Wu J, Shen X, Han S 2019 Opt. Express 27 13219Google Scholar

    [17]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [18]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602Google Scholar

    [19]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144Google Scholar

    [20]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [21]

    Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V, Wu L A 2010 Opt. Lett. 35 1166Google Scholar

    [22]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695Google Scholar

    [23]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [24]

    Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U, Paganin D M 2020 Phys. Rev. A 101 053844Google Scholar

    [25]

    Pelliccia D, Olbinado M, Rack A, Kingston A, Myers G, Paganin D 2018 IUCrJ 5 428Google Scholar

    [26]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [27]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [28]

    Klein Y, Schori A, Dolbnya I P, Sawhney K, Shwartz S 2019 Opt. Express 27 3284Google Scholar

    [29]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [30]

    Schori A, Borodin D, Tamasaku K, Shwartz S 2018 Phys. Rev. A 97 063804Google Scholar

    [31]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [32]

    Yu H, Lu R, Han S, Xie H, Du G, Xiao T, Zhu D 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [33]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [34]

    孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701Google Scholar

    Sun H F, Bao F W, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [35]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴 令安, 翟光杰 2013 物理学报 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [36]

    Zhao C Z, Si S Y, Zhang H P, Xue L , Li Z L, Xiao T Q 2021 Acta Phys. Sin. 70Google Scholar

  • [1] Kong Mei-Mei, Xue Yin-Yan, Xu Chun-Sheng, Dong Yuan, Liu Yue, Pan Shi-Cheng, Zhao Rui. Design and analysis of biconvex liquid lens with circular hole plate electrode structure. Acta Physica Sinica, 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] Cheng Zhi-Yuan, Ma Cai-Wen, Ma Qing. Theoretical research of influence of laser intensity fluctuation on imaging quality degradation of coherent field. Acta Physica Sinica, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [5] Zhang Yu, Luo Xiu-Juan, Cao Bei, Chen Ming-Lai, Liu Hui, Xia Ai-Li, Lan Fu-Yang. Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic. Acta Physica Sinica, 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [6] Cheng Zhi-Yuan, Ma Cai-Wen, Luo Xiu-Juan, Zhang Yu, Zhu Xiang-Ping, Xia Ai-Li. Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error. Acta Physica Sinica, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [7] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [8] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [9] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [10] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [11] Pang Wu-Bin, Cen Zhao-Feng, Li Xiao-Tong, Qian Wei, Shang Hong-Bo, Xu Wei-Cai. The effect of polarization light on optical imaging system. Acta Physica Sinica, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [12] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [13] Liu Zheng, Wang Sheng-Qian, Huang Lin-Hai, Rao Chang-Hui. Analysis of comprehensive effects of piston error and sub-aperture aberrations on the image quality of sparse-optical-synthetic-aperture system. Acta Physica Sinica, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [14] Li Guo-Jun, Kang Xue-Liang, Li Yong-Ping. Far-field focusing properties of two-dimensional honeycomb photonic crystals and the effect of the interface. Acta Physica Sinica, 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [15] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Xie Hong-Lan, Xiao Ti-Qiao. Effect of some factors on imaging quality of X-ray in-line outline imaging. Acta Physica Sinica, 2007, 56(8): 4556-4564. doi: 10.7498/aps.56.4556
    [16] Huang Wan-Xia, Zhu Pei-Ping, Yuan Qing-Xi, Wang Jun-Yue, Shu Hang, Hu Tian-Dou, Wu Zi-Yu. Comparison between two geometrical arrangements for diffraction enhanced imaging. Acta Physica Sinica, 2006, 55(10): 5178-5185. doi: 10.7498/aps.55.5178
    [17] Zhu Pei-Ping, Yuan Qing-Xi, Huang Wan-Xia, Wang Jun-Yue, Shu Hang, Wu Zi-Yu, Xian Ding-Chang. Principles of X-ray diffraction enhanced imaging. Acta Physica Sinica, 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [18] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] Zhu Pei-Ping, Wang Jun-Yue, Yuan Qing-Xi, Tian Yu-Lian, Huang Wan-Xia, Li Gang, Hu Tian-Dou, Jiang Xiao-Ming, Wu Zi-Yu. Study on the methods for diffraction-enhanced imaging with two crystals. Acta Physica Sinica, 2005, 54(1): 58-63. doi: 10.7498/aps.54.58
    [20] LU XUE-SHAN, LIANG JING-KUI. THE DETERMINATION OF DEBYE CHARACTERISTIC TEMPERATURES OF CRYSTALS FROM X-RAY DIFFRACTION INTENSITIES. Acta Physica Sinica, 1981, 30(10): 1361-1368. doi: 10.7498/aps.30.1361
Metrics
  • Abstract views:  3705
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2021
  • Accepted Date:  30 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回