Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%

Zhang Mei-Rong Zhu Zeng-Wei Yang Xiao-Qin Yu Tong-Xu Yu Xiao-Qi Lu Di Li Shun-Feng Zhou Da-Yong Yang Hui

Citation:

Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%

Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui
PDF
HTML
Get Citation
  • Double junction tandem solar cells consisting of two absorbers with designed different band gaps show great advantage in breaking the Shockley-Queisser limit efficiency of single junction solar cell by differential absorption of sunlight in a wider range of wavelengths and reducing the thermal loss of photons. Owing to the advantages of adjustable band gap and low cost of perovskite cells, perovskite/crystalline silicon tandem solar cells have become a research hotspot in photovoltaics. We systematically review the latest research progress of perovskite/crystalline silicon tandem solar cells. Focusing on the structure of perovskite top cells, intermediate interconnection layers and crystalline silicon bottom cells, we summarize the design principles of high-efficiency tandem devices in optical and electrical aspects. We find that the optical and electrical engineering of each layer structure in perovskite/crystalline silicon tandem solar cells goes through the whole process of device preparation. We also summarize the challenges of limiting the further improvement of the efficiency of the perovskite/crystalline silicon tandem solar cells and the corresponding improvement measures, which covers the following respects: 1) Improving the balance between Voc and Jsc of the broadband perovskite cell through additive engineering and interface engineering; 2) improving the bandgap matching between the electrical layers and reducing the carrier transport barrier through adjusting the work function or conductivity of layers; 3) improving the photocurrent coupling between sub-cells and the photocurrent of tandem solar cells by using light engineering and conformal deposition technology of perovskite cells. At present, there have been many technologies to improve the stability of perovskite solar cells, such as additive engineering and interface engineering, but the problem has hardly been solved. Therefore, improving the stability of broadband gap perovskite solar cells to the level of crystalline silicon solar cells will become an important challenge to limit its large-scale application. In terms of efficiency, the mass production efficiency of perovskite/crystalline silicon tandem solar cells is far lower than that of the laboratory level. One of the reasons is that it is difficult to achieve low-cost and deposition of uniform large area perovskite solar cells. Therefore improving the stability of broadband gap perovskite solar cells and developing low-cost large-area perovskite deposition technology will become extremely critical. Finally we look forward to the next generation of higher efficient low-cost tandem solar cells. We believe that with the increasing demand for higher efficiency photovoltaic devices, the triple junction solar cells based on the perovskite/crystalline silicon stack structure will become the future photovoltaics.
      Corresponding author: Zhang Mei-Rong, zhangmeirong2022@gusulab.ac.cn ; Zhou Da-Yong, zhoudayong2021@gusulab.ac.cn
    • Funds: Project supported by the Special Fund for the “Dual Carbon” Science and Technology Innovation of Jiangsu Province, China (Industrial Prospect and Key Technology Research program) (Grant No. BE2022021) and the “Dual Carbon” Science and Technology Innovation of Suzhou, China (Grant No. ST202219).
    [1]

    Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar

    [2]

    Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar

    [3]

    Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar

    [4]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860

    [5]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [6]

    Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar

    [7]

    Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar

    [8]

    Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar

    [9]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [10]

    NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.

    [11]

    Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar

    [12]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [13]

    Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar

    [14]

    Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [15]

    Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar

    [16]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [17]

    Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar

    [18]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [19]

    N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [20]

    Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [21]

    Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar

    [22]

    R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar

    [23]

    Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [24]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [25]

    Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar

    [26]

    Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar

    [27]

    Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar

    [28]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [29]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [30]

    Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar

    [31]

    Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar

    [32]

    D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar

    [33]

    Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar

    [34]

    Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar

    [35]

    Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar

    [36]

    Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar

    [37]

    Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar

    [38]

    Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar

    [39]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar

    [40]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [41]

    Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar

    [42]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [43]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [44]

    Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [45]

    Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [46]

    Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar

    [47]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页

    Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)

    [48]

    Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [49]

    Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar

  • 图 1  (a) TSC对太阳光谱吸收情况; (b)单结和多结太阳能电池工作原则[5]; (c)双结TSC理论PCE

    Figure 1.  (a) Absorption spectrum for TSC; (b) working principle for a single junction and multi-junction solar cells [5]; (c) theoretical PCEs for two junction TSC.

    图 2  (a) Voc和(b) JscABX3带隙变化分布[23]

    Figure 2.  (a) Voc and (b) Jsc as function of band gap or onset of absorption [23].

    图 3  (a)最优TSC的J-V曲线和稳态PCE (插图), 有效面积为16 cm2; (b)最优TSC的EQE曲线; 基于(c)新型和(d)传统金属栅线模拟电池的Voc降低[27]

    Figure 3.  (a) J-V curve and in the inset steady-state PCE of TSC on 16 cm2; (b) EQE for the corresponding device; simulated voltage drops across the cell with (c) new and (d) old metal grid design [27].

    图 4  (a)半透明PSCs结构示意图; (b) TSC的EQE曲线[28]

    Figure 4.  (a) Cross sectional SEM image of the perovskite/Si two-terminal tandem device; (b) external quantum efficiency of tandem device [28].

    图 5  (a)有效面积为1 cm2的钙钛矿/硅TSC结构示意图和横截面SEM图; 最优电池的(b)光照/暗态J-V曲线和MPP点跟踪PCE(插图); (c)EQE曲线[30]

    Figure 5.  (a) Schematic of tandem structure (not to scale) and cross-sectional SEM image; (b) light/dark J-V curves and MPP tracking (inset) and (c) EQE spectra of the champion tandem [30].

    图 6  (a) TSC结构示意图; Eg为1.68 eV的钙钛矿沉积在不同HTL上的(b)准费米能级裂分值和(c)认证的J-V曲线, 包括MPP效率和电性能参数[35]

    Figure 6.  (a) Schematic stack of the perovskite/silicon TSC; (b) quasi-Fermi level splitting (QFLS) values of 1.68 eV bandgap perovskite films on different substrate; (c) certified J-V curve including the MPP value and the device parameters[35].

    图 7  (a) PSCs各组分能级排列; (b)含有不同HTL的PSCs的J-V曲线[36]

    Figure 7.  (a) Relative energy levels of the various device components in the perovskite solar cells; (b) J-V curves of the perovskite solar cells with various hole transport layers [36].

    图 8  (a) n-i-p结构和(b)p-i-n结构TSCs 结构示意图; (c)和(d)相应的吸收反射光谱[39]

    Figure 8.  Perovskite/SHJ TSC structures with (a) n-i-p and (b) p-i-n; absorption and reflection spectra of optimized TSCs for the (c) regular architecture and (d) inverted architecture [39].

    图 9  钙钛矿/晶硅TSC的(a)结构示意图和(b) J-V曲线[26]; (c)钙钛矿/HJTTSC结构示意图; (d) 材料的折射率(n)对比; 1.1 cm2的最优电池的(e) J-V曲线和(f) EQE曲线[40]

    Figure 9.  (a) Schematic and (b) J-V curve of tandem cell[26]; (c) schematic of tandem cell; (d) the sequence of refractive indices in the cell stack; (e) J-V curve; (f) EQE curves of the champion tandem cell (1.1 cm2) [40].

    图 10  (a)全绒面TSC结构示意图; (b)钙钛矿顶电池截面的二次电子SEM图[42]; (c)全绒面TSC结构和N2辅助刮涂示意图; (d) N2辅助刮涂PTAA的SEM图[44]; (e)正弦纳米结构互联界面SEM图; (f)正弦纳米结构互联TSC的QE曲线[45]

    Figure 10.  (a) Schematic view of a fully textured TSC; (b) secondary electron SEM image of a cross section of the perovskite top cell [42]; (c) schematic view of a fully textured TSC and N2-assisted blade coating; (d) SEM images of PTAA by N2-assisted blade coating [44]; (e) SEM of sinusoidal nanostructured interconnection; (f) QE curve of TSC with sinusoidally nanostructured [45].

    图 11  (a)界面复合模型; (b)隧道复合模型[47]

    Figure 11.  (a) Interface composite model; (b) tunnel composite model [47].

    图 12  (a)钙钛矿/HIT TSC结构示意图; (b) ITO/玻璃基底和nc-Si:H/玻璃基底的吸收光谱; (c)具有不同互联层的TSC的反射光谱[48]

    Figure 12.  (a) Schematic view of perovskite/SHJ TSC; (b) absorptance of ITO/glass and nc-Si:H/glass; (c) reflectance of TSC with different interconnect layer [48].

    图 13  (a)无互联层的TSC结构示意图; (b)不同p++掺杂浓度拟合出的SnO2/p++界面的暗态J-V曲线, 插图为界面存在SiO2时的能带示意图; 16 cm2的最优TSC的(c)J-V曲线, 插图为稳态PCE曲线和(d)EQE曲线和吸收光谱[49]

    Figure 13.  (a) Schematic device design of interface-layer-free TSC. (b) simulated dark J-V curves for the SnO2/p++ silicon interface with varied p++ doping concentration. Inset is corresponding band diagram with native SiO2. (c) J-V curve and the steady-state PCE in the inset and (d) EQE and the total absorbance for the champion tandem device on 16 cm2 [49]

    表 1  高效率钙钛矿/晶硅叠层电池性能

    Table 1.  Performance of high efficiency perovskite/c-Si solar cells.

    Device structureSi cellICsPerovskiteBandgapETLHTLArea/PCE/Jsc/Voc/FF/Ref.
    /eVcm2%(mA·cm–2)V%
    n-i-pn-BSFn++/p++ a-Si:HCH3NH3PbI31.61TiO2Spiro-OMeTAD113.711.51.5875[9]
    n-i-pn- PERCITOCs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)31.62TiO2Spiro-OMeTAD122.817.61.7573.8[26]
    n-i-pn-PERC(FAPbI3)0.83(MAPbBr3)0.171.59SnO2Spiro-OMeTAD1621.916.21.7478[27]
    n-i-pn-HJTITOFA 0.5MA0.38Cs0.12PbI2.04Br0.961.69SnO2Spiro-OMeTAD0.0622.216.51.65581.1[28]
    n-i-pn-HJTn+/p+nc-Si:HCs0.19FA0.81Pb-(I0.78Br0.22)31.63C60Spiro-OMeTAD0.2522.716.81.75177.1[48]
    n-i-pn-PERCCH3NH3PbI3SnO2Spiro-OMeTAD1615.615.51.65961[49]
    p-i-nHJTn+/p+nc-Si:HCsxFA1–xPb(I Br)3C60/SnO2Spiro-TTB1.4225.5219.51.78873.1[42]
    p-i-nn-HJTITOCs0.15(FA0.83MA0.17)0.85Pb(I0.7Br0.3)31.64C60/SnO2PTAA0.4925.417.81.819.4[29]
    p-i-np-BSFITO(FAMAPbI3)0.8(MAPbBr3)0.21.64PCBMPTAA0.2721.0216.131.64579.23[36]
    p-i-nHJTInOxCs0.05MA0.15FA0.8PbI2.25Br0.751.68C60/SnOxNiOx0.8322619.81.777[37]
    p-i-nn-HJTITOCs0.05(FA0.83MA0.17)0.95Pb(I1–xBrx)31.63PC61BMF4-TCNQ doped polyTPD and NPD1.08825.319.021.79374.3[40]
    p-i-nHJTITOCs0.25FA0.75Pb(I0.85Br0.15)3+MAPbCl31.67C60/SnOPolyTPD/NiOx127.1319.121.88675.3[30]
    p-i-nn-HJTITOCs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)31.68C60Me-4PACz(SAM)1.06429.1519.261.979.52[35]
    p-i-nn-HJTITOCs0.1MA0.9Pb(I0.9Br0.1)3C60/SnO2PTAA0.0492619.21.8274.4[44]
    p-i-nn-HJTn+/p+nc-Si:HFA0.9Cs0.1PbI2.87Br0.131.63C60/SnO2Spiro-TTB0.509127.4819.781.8876.85[46]
    p-i-nn-TOPConITOCs0.22FA0.78Pb(Cl0.03 Br0.15I0.85)3C60/SnO2NiOx127.6319.681.79478.27[41]
    DownLoad: CSV
  • [1]

    Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar

    [2]

    Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar

    [3]

    Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar

    [4]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860

    [5]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [6]

    Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar

    [7]

    Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar

    [8]

    Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar

    [9]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [10]

    NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.

    [11]

    Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar

    [12]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [13]

    Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar

    [14]

    Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [15]

    Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar

    [16]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [17]

    Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar

    [18]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [19]

    N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [20]

    Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [21]

    Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar

    [22]

    R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar

    [23]

    Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [24]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [25]

    Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar

    [26]

    Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar

    [27]

    Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar

    [28]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [29]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [30]

    Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar

    [31]

    Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar

    [32]

    D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar

    [33]

    Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar

    [34]

    Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar

    [35]

    Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar

    [36]

    Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar

    [37]

    Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar

    [38]

    Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar

    [39]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar

    [40]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [41]

    Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar

    [42]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [43]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [44]

    Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [45]

    Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [46]

    Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar

    [47]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页

    Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)

    [48]

    Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [49]

    Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar

  • [1] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] Zhong Jian-Cheng, Zhang Xiao-Tian, Lin Chang-Qing, Xue Yang, Tang Huan, Huang Dan. Top cell design and optimization of all-chalcopyrite CuGaSe2/CuInSe2 two-terminal tandem solar cells. Acta Physica Sinica, 2024, 73(10): 103101. doi: 10.7498/aps.73.20240187
    [3] Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua. Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination. Acta Physica Sinica, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [4] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [5] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [6] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [7] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [8] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [9] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [10] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [11] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [12] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [13] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [18] Hou Guo-Fu, Lu Peng, Han Xiao-Yan, Li Gui-Jun, Wei Chang-Chun, Geng Xin-Hua, Zhao Ying. Improving the light-soaking stability of a-Si: H/μc-Si: H tandem solar cells. Acta Physica Sinica, 2012, 61(13): 138401. doi: 10.7498/aps.61.138401
    [19] Zhang Xiao-Dan, Zheng Xin-Xia, Wang Guang-Hong, Xu Sheng-Zhi, Yue Qiang, Lin Quan, Wei Chang-Chun, Sun Jian, Zhang De-Kun, Xiong Shao-Zhen, Geng Xin-Hua, Zhao Ying. High efficiency amorphous/microcrystalline silicon tandem solar cells deposited in a single chamber system. Acta Physica Sinica, 2010, 59(11): 8231-8236. doi: 10.7498/aps.59.8231
    [20] HAN DA-XING, WANG WAN-LU, ZHANG ZHI. MECHANISM OF ELECTROLUMINESCENCE FROM a-Si:H AND STUDIES OF DEFECT ENERGY DISTRIBUTION IN INTRINSIC LAYER OF a-Si:H SOLAR CELLS BY ELECTROLUMINESCENCE SPECTRA. Acta Physica Sinica, 1999, 48(8): 1484-1490. doi: 10.7498/aps.48.1484
Metrics
  • Abstract views:  10121
  • PDF Downloads:  530
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2022
  • Accepted Date:  09 December 2022
  • Available Online:  05 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回