Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region

Shi Lu-Lin Cheng Rui Wang Zhao Cao Shi-Quan Yang Jie Zhou Ze-Xian Chen Yan-Hong Wang Guo-Dong Hui De-Xuan Jin Xue-Jian Wu Xiao-Xia Lei Yu Wang Yu-Yu Su Mao-Gen

Citation:

Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region

Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen
PDF
HTML
Get Citation
  • Ion energy loss in the interaction between highly charged ions and dense plasma near Bohr velocity energy region is one of the important physical problems in the field of high-energy density physics driven by intense heavy ion beams. Based on the 320 kV experimental platform at the Institute of Modern Physics, Chinese Academy of Sciences, a new experimental setup was built for the research of interaction between ions and laser-produced plasma near the Bohr velocity, where the ion energy loss and charge state distribution can be experimentally investigated. In this paper we introduce the new setup in detail, including the generation and controlling of pulsed ion beam ( ≥ 200 ns); the preparation of high-density laser plasma target (1017—1021 cm–3); the diagnostics of plasma and the developed high energy resolution ion measurement system (< 1%). In the experiment, the charge distribution of Xe15+ ions with 4 MeV penetrating through the laser-produced Al plasma target is measured. The charge-state analysis device observes different results without and with the plasma, in which the outgoing Xe ion charge-state changes correspondingly from the 15+ to 10+, thus the electron capture process is believed to be dominant. In addition, the proton energy loss is also measured by using the magnetic spectrometer, showing that the experimental energy loss is about 2.0 keV, 30% higher than those theoretical predictions , which can be attributed to the fact that in the near Bohr velocity energy regime, the first-order Born approximation condition is not valid, thus the Bethe model and SSM model are inapplicable to the experimental results. In future, a systematic study will be performed based on our ions-plasma ineteraction setup, and the energy loss and charge state data will be introduced.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn ; Su Mao-Gen, sumg@nwnu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12064040, 12204382), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 12120101005), and the Natural Science Foundation of Gansu Province, China (Grant No. 21JR7RA129).
    [1]

    Hofmann I 2018 MRE 3 1Google Scholar

    [2]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar

    [3]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar

    [4]

    Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar

    [5]

    任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar

    Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar

    [6]

    Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar

    [7]

    赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar

    Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar

    [8]

    程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar

    Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar

    [9]

    赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar

    Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar

    [10]

    Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar

    [11]

    Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar

    [12]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar

    [13]

    Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar

    [14]

    Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar

    [15]

    Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar

    [16]

    Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar

    [17]

    Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar

    [18]

    Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar

    [19]

    Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar

    [20]

    Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar

    [21]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [22]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [23]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1

    [24]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar

    [25]

    Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar

    [26]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [27]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar

    [28]

    Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar

    [29]

    Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar

    [30]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [31]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [32]

    Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar

    [33]

    Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar

    [34]

    Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [35]

    Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar

    [36]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [37]

    曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202

    Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202

    [38]

    Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar

    [39]

    Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar

    [40]

    Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar

  • 图 1  NBVER离子束与LPP相互作用实验装置

    Figure 1.  Experimental set-ups of ions beam LPP interaction in the NBVER.

    图 2  LPPT产生与匹配的等离子体诊断系统示意图(ICCD, 光谱仪的一个单元)

    Figure 2.  Schematic diagram of producing the LPPT and matching the plasma diagnostics system (ICCD, a unit of the spectrometer).

    图 3  激光光纤干涉仪示意图[34]

    Figure 3.  Diagram of the optical fiber interferometer[34].

    图 4  离子束与LPPT相互作用的高精度空间耦合调控

    Figure 4.  High precision spatial coupling control of ion beam interaction with LPPT.

    图 5  离子电荷态分析装置

    Figure 5.  Instrument of ions charge state analyzer

    图 6  磁谱仪装置

    Figure 6.  Instrument of magnetic spectrometer.

    图 7  实验装置各单元的时序控制关系图 (a) 实验系统时空耦合关系; (b) 时序控制逻辑顺序

    Figure 7.  Triger sequences control diagram of each unit of experimental apparatus: (a) Spatio-temporal coupling of the experimental system; (b) sequence control logic sequence.

    图 8  利用在线等离子体诊断装置获取的激光Al等离子体靶相关参数演化信息 (a)等离子体羽的空间分布; (b)光谱法与激光光纤干涉法分别诊断得到的等离子体的平均自由电子密度; (c)光谱法诊断得到的等离子体靶区的平均温度

    Figure 8.  Evolution of the laser-produced Al plasma target related parameters obtained by online plasma diagnostic device: (a) Spatial distribution of plasma-plume; (b) plasma diagnosed by optical emission spectroscopy and laser fiber interferometer, respectively; (c) average temperature of plasma target diagnosed by optical emission spectroscopy.

    图 9  电荷态分析装置测量的Xe15+离子在有/无激光Al等离子体靶条件下的电荷态分布结果

    Figure 9.  Charge state distributions of Xe15+ ions with/without the laser-produced Al plasma target conditions measured by the charge state analysis device.

    图 10  磁能谱仪测量的质子在有/无激光Al等离子体靶条件下能谱结果 (a)图像结果; (b)数据结果

    Figure 10.  Energy spectrum of proton with/without laser-produced Al plasma target conditions measured by the magnetic energy spectrometer: (a) Image results; (b) data results.

    图 11  实验测量到的150和200 keV 质子在LPPT中能损与Bethe[39]和SSM[40]理论计算结果的对比

    Figure 11.  Comparison of experimental energy loss of 150 and 200 keV proton in the laser-produced plasma with theoretical calculations from the Bethe[39] and SSM[40] models.

  • [1]

    Hofmann I 2018 MRE 3 1Google Scholar

    [2]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar

    [3]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar

    [4]

    Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar

    [5]

    任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar

    Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar

    [6]

    Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar

    [7]

    赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar

    Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar

    [8]

    程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar

    Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar

    [9]

    赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar

    Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar

    [10]

    Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar

    [11]

    Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar

    [12]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar

    [13]

    Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar

    [14]

    Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar

    [15]

    Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar

    [16]

    Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar

    [17]

    Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar

    [18]

    Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar

    [19]

    Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar

    [20]

    Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar

    [21]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [22]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [23]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1

    [24]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar

    [25]

    Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar

    [26]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [27]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar

    [28]

    Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar

    [29]

    Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar

    [30]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [31]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [32]

    Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar

    [33]

    Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar

    [34]

    Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [35]

    Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar

    [36]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [37]

    曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202

    Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202

    [38]

    Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar

    [39]

    Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar

    [40]

    Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar

  • [1] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie. Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma. Acta Physica Sinica, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [4] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [5] Zhang Xiao-An, Mei Ce-Xiang, Zhang Ying, Liang Chang-Hui, Zhou Xian-Ming, Zeng Li-Xia, Li Yao-Zong, Liu Yu, Xiang Qian-Lan, Meng Hui, Wang Yi-Jun. 129Xeq+ induced near-infrared light and X-ray emission at Cu surface. Acta Physica Sinica, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [6] Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss. Acta Physica Sinica, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [7] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [8] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [9] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [10] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [11] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [12] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [14] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [15] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [16] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [17] Wang Gui-Qiu, Wang You-Nian. Influence of laser field on interactions between swift molecular ions and solids. Acta Physica Sinica, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [18] Yang Jia-Min, Ding Yao-Nan, Chen Bo, Zheng Zhi-Jian, Yang Guo-Hong, Zhang Bao-Han, Wang Yao-Mei, Zhang Wen-Hai. Electron temperature measurement of low-energy laser produced plasma using iso-electronic x-ray spectroscopy. Acta Physica Sinica, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
Metrics
  • Abstract views:  2258
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2023
  • Accepted Date:  04 May 2023
  • Available Online:  05 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回