Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of defect structure regulation and thermoelectric transfer performance in n-type Bi2–xSbxTe3–ySey-based compounds

Li Rui-Ying Luo Ting-Ting Li Mao Chen Shuo Yan Yong-Gao Wu Jin-Song Su Xian-Li Zhang Qing-Jie Tang Xin-Feng

Citation:

Research of defect structure regulation and thermoelectric transfer performance in n-type Bi2–xSbxTe3–ySey-based compounds

Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng
PDF
HTML
Get Citation
  • Bi2Te3-based compounds are thermoelectric materials with the best performance near room temperature. The existence of a large number of complex defects makes defect engineering a core stratagem for adjusting and improving the thermoelectric performance. Therefore, understanding and effectively controlling the existence form and concentration of defects is crucial for achieving high-thermoelectric performance in Bi2Te3-based alloy. Herein, a series of Cl doped n-type quaternary Bi2−xSbxTe3–ySey compounds is synthesized by the zone-melting method. The correlation between defect evolution process and thermoelectric performance is systematically investigated by first-principles calculation and experiments. Alloying Sb on Bi site and Se on Te site induce charged structural defects, leading to a significant change in the carrier concentration. For Bi2–xSbxTe2.994Cl0.006 compounds, alloying Sb on Bi site reduces the formation energy of the ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$antisite defect, which generates the antisite defect ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$ and accompanied with the increase of the minority carrier concentration from 2.09×1016 to 3.99×1017 cm–3. The increase of the minority carrier severely deteriorates the electrical transport properties. In contrast, alloying Se in the Bi1.8Sb0.2Te2.994–ySeyCl0.006 compound significantly lowers the formation energy of the complex defect ${\mathrm{S}}{{\mathrm{e}}_{{\mathrm{Te}}}}$+${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{Bi}}}}$, which becomes more energetically favorable and suppresses the formation of the antisite defect ${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$. As a result, the concentration of minority carriers decreases to 1.46×1016 cm–3. This eliminates the deterioration effect of the minority carrier on the electrical transport properties of the material and greatly improves the power factor. A maximum power factor of 4.49 mW/(m·K2) is achieved for Bi1.8Sb0.2Te2.944Se0.05Cl0.006 compound at room temperature. By reducing thermal conductivity through intensifying the phonon scattering via alloying Sb and Se, the maximum ZT value of 0.98 is attained for Bi1.8Sb0.2Te2.844Se0.15Cl0.006 compound at room temperature. Our finding provides an important guidance for adjusting point defects, carrier concentrations, and thermoelectric performances in Bi2Te3-based compounds with complex compositions.
  • 图 1  (a) 区熔法制备Bi2–xSbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品粉末X射线衍射图谱; (b) Bi1.8Sb0.2Te2.694Se0.3Cl0.006样品垂直于提拉方向自由断裂截面的场发射扫描电子显微镜照片; (c) Bi1.8Sb0.2Te2.694Se0.3Cl0.006样品抛光表面背散射电子图像(单位原子百分比)以及对应区域Bi, Sb, Se和Te等元素的面分布图像

    Figure 1.  (a) Powder XRD patterns of Bi2–xSbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples prepared by zone melting method; (b) field emission scanning electron microscope images of freshly fractured surfaces of the Bi1.8Sb0.2Te2.694Se0.3Cl0.006 sample measured perpendicular to the travel direction during zone melting; (c) backscattered electron image of polished surfaces for Bi1.8Sb0.2Te2.694Se0.3Cl0.006 sample and the corresponding elemental mapping images for Bi, Sb, Se and Te, respectively.

    图 2  Bi2–xSbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的电输运性能 (a), (b) 电导率; (c), (d) Seebeck系数; (e), (f) 功率因子

    Figure 2.  Temperature-dependent electronic transport properties for Bi2–xSbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples: (a), (b) Electrical conductivity; (c), (d) Seebeck coefficient; (e), (f) power factor.

    图 3  (a), (b) 室温载流子浓度及迁移率随Sb, Se含量的变化; (c) 室温下样品的塞贝克系数与载流子浓度的关系, 图中紫色实线、红色实线、黄色实线为不同态密度有效质量下基于单抛带模型计算的塞贝克系数与载流子浓度关系曲线

    Figure 3.  (a), (b) Hall carrier mobility and concentration change with respect to the Sb, Se content; (c) Seebeck coefficients as a function of the charge carrier concentration at 300 K, where the colored dash lines are Pisarenko plots based on the single parabolic band model with different effective mass.

    图 4  Bi2Te3基化合物中不同点缺陷形成能 (a) Bi2–xSbxTe3固溶体; (b) Bi2–xSbxTe3–ySey固溶体

    Figure 4.  Theoretically calculated formation energies of different point defects in (a) Bi2–xSbxTe3 and (b) Bi2–xSbxTe3–ySey solid solution as a function of the Fermi level under the Te-poor condition.

    图 5  在200 K下, 不同样品 (a) 两种载流子浓度及其比值随组分变化情况; (b) 两种载流子迁移率及其比值随组分变化情况; (c) Bi2–xSbxTe3–ySey固溶体缺陷演化过程示意图

    Figure 5.  Composition dependence of (a) ne, nh, and nh/ne, (b) μe, μh, and μe/μh of different samples at 200 K. (c) Defect evolution process for Bi2–xSbxTe3–ySey solid solution.

    图 6  Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的(a) 总热导率κ、(b) 热导率κκe和(c) 无量纲热电优值ZT随温度的变化

    Figure 6.  Temperature-dependent (a) Total thermal conductivity, (b) thermal conductivity κκe, (c) ZT for Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples.

    表 1  Bi2–xSbxTe2.994Cl0.006和Bi1.8Sb0.2Te2.994–ySeyCl0.006样品的室温物理性能参数

    Table 1.  Room-temperature physic properties of Bi2–xSbxTe2.994Cl0.006 and Bi1.8Sb0.2Te2.994–ySeyCl0.006 samples.

    Samples σ/(104 S·m–1) S/(μV·K–1) n/(1019 cm–3) μ/(cm2·V–1·s–1) κ/(W·m–1·K–1) m*/m0
    x = 0 11.2 –214.0 1.06 568 1.84 0.51
    x = 0.05 11.0 –209.6 0.91 750 1.75 0.45
    x = 0.10 9.94 –216.4 0.88 706 1.72 0.45
    x = 0.15 9.16 –223.2 0.82 698 1.58 0.45
    x = 0.20 5.79 –210.0 0.64 661 1.66 0.36
    y = 0.05 8.97 –223.1 1.16 481 1.42 0.57
    y = 0.10 8.46 –223.6 1.95 271 1.41 0.80
    y = 0.15 9.94 –209.9 2.35 264 1.35 0.86
    y = 0.20 8.82 –215.8 2.57 214 1.45 0.94
    y = 0.25 8.68 –217.4 1.92 282 1.33 0.66
    y = 0.30 9.15 –207.2 1.80 318 1.30 0.70
    DownLoad: CSV
  • [1]

    Liu S X, Tian J L, Wu S, Zhang W, Luo M Y 2022 Nano Energy 93 106812Google Scholar

    [2]

    Hu B X, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [3]

    Chen W Y, Shi X L, Zou J, Chen Z G 2022 Mater. Sci. Eng. , R 151 100700Google Scholar

    [4]

    Han C G, Qian X, Li Q K, Deng B, Zhu Y B, Han Z J, Zhang W Q, Wang W C, Feng S P, Chen G, Liu W S 2020 Science 368 1091Google Scholar

    [5]

    Zhang Q, Yuan M, Pang K, Zhang Y, Wang R, Tan X, Wu G, Hu H, Wu J, Sun P, Liu G Q, Jiang J 2023 Adv. Mater. 35 2300338Google Scholar

    [6]

    Xie H Y, Hao S Q, Bao J K, Slade T J, Snyder G J, Wolverton C, Kanatzidis M G 2020 J. Am. Chem. Soc. 142 9553Google Scholar

    [7]

    Xie H, Zhao L D, Kanatzidis M G 2024 Interdiscip. Mater. 1 24

    [8]

    Liu Z, Hong T, Xu L, Wang S, Gao X, Chang C, Ding X, Xiao Y, Zhao L D 2022 Interdiscip. Mater. 2 161

    [9]

    Suh J, Yu K M, Fu D Y, Liu X Y, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C, Walukiewicz W, Wu J Q 2015 Adv. Mater. 27 3681Google Scholar

    [10]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [11]

    Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820 8

    [12]

    Cheng Y, Cojocaru‐Mirédin O, Keutgen J, Yu Y, Küpers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316Google Scholar

    [13]

    Shen J J, Hu L P, Zhu T J, Zhao X B 2011 Appl. Phys. Lett. 99 124102 3

    [14]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv. Sci. 3 1600004Google Scholar

    [15]

    Horak J, Stary Z, Lošťák P, Pancíř J 1990 J. Phys. Chem. Solids 51 1353Google Scholar

    [16]

    Starý Z, Horak J, Stordeur M, Stölzer M 1988 J. Phys. Chem. Solids 49 29Google Scholar

    [17]

    Horak J, Čermák K, Koudelka L 1986 J. Phys. Chem. Solids 47 805Google Scholar

    [18]

    Miller G R, Li C Y 1965 J. Phys. Chem. Solids 26 173Google Scholar

    [19]

    Gobrecht H, Pantzer G, Boeters K E 1964 Z. Phys. 177 68Google Scholar

    [20]

    Offergeld G, Van Cakenberghe J 1959 J. Phys. Chem. Solids 11 310Google Scholar

    [21]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331Google Scholar

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331Google Scholar

    [22]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 物理学报 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin. 72 097101Google Scholar

    [23]

    Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z 2012 J. Am. Chem. Soc. 134 10031Google Scholar

    [24]

    Mehta R J, Zhang Y L, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T, Ramanath G 2012 Nat. Mater. 11 233Google Scholar

    [25]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [26]

    Pei Y Z, Heinz N A, LaLonde A, Snyder G J 2011 Energy Environ. Sci. 4 3640Google Scholar

    [27]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [28]

    Navratil J, Starý Z, Plechacek T 1996 Mater. Res. Bull. 31 1559Google Scholar

    [29]

    Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H, Yin Z Z 2010 Energy Environ. Sci. 3 1519Google Scholar

    [30]

    Oh T S, Hyun D B, Kolomoets N V 2000 Scr. Mater. 42 849Google Scholar

    [31]

    Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L 2016 Energy Environ. Sci. 9 3120Google Scholar

    [32]

    Hwang J Y, Kim J, Kim H S, Kim S I, Lee K H, Kim S W 2018 Adv. Energy Mater. 8 1800065Google Scholar

    [33]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [34]

    Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F, Uher C 2017 Adv. Mater. 29 23

    [35]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [36]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [37]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [38]

    Witting I T, Ricci F, Chasapis T C, Hautier G, Snyder G J 2020 Research 2020 4361703

  • [1] Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, doi: 10.7498/aps.72.20230231
    [2] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, doi: 10.7498/aps.71.20220584
    [3] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, doi: 10.7498/aps.71.20221247
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, doi: 10.7498/aps.71.20220179
    [5] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, doi: 10.7498/aps.71.20211843
    [6] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, doi: 10.7498/aps.70.20202094
    [7] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, doi: 10.7498/aps.70.20210041
    [8] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, doi: 10.7498/aps.70.20211843
    [9] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, doi: 10.7498/aps.61.217104
    [10] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, doi: 10.7498/aps.61.086101
    [11] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, doi: 10.7498/aps.60.018403
    [12] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, doi: 10.7498/aps.59.2860
    [13] Jiang Ming-Bo, Wu Zhi-Xiong, Zhou Min, Huang Rong-Jin, Li Lai-Feng. Cryogenic thermoelectric properties of BiTe-based alloys and cryo-energy power generation. Acta Physica Sinica, doi: 10.7498/aps.59.7314
    [14] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, doi: 10.7498/aps.59.8783
    [15] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, doi: 10.7498/aps.59.8927
    [16] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, doi: 10.7498/aps.57.6488
    [17] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Zhang Hai-Long, Zhao Li-Dong. Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey. Acta Physica Sinica, doi: 10.7498/aps.57.3791
    [18] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, doi: 10.7498/aps.56.7309
    [19] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, doi: 10.7498/aps.55.4849
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  217
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2024
  • Accepted Date:  01 March 2024
  • Available Online:  12 March 2024

/

返回文章
返回