Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12

Luo Xiao-Jing Yang Chang-Ping Song Xue-Ping Xu Ling-Fang

Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12

Luo Xiao-Jing, Yang Chang-Ping, Song Xue-Ping, Xu Ling-Fang
PDF
Get Citation
  • Pure colossal dielectric constant oxide CaCu3Ti4O12 (CCTO) compound was prepared by traditional ceramic processing. Dielectric dispersion and complex impedances spectra were investigated using a impedance analyzer within a temperature range of 10—420 K. The data were simulated by “ZVIEW” software. The result indicates that there are two obvious relaxations in the dielectric dispersion spectra when the temperature is higher than room temperature and the dielectric constant increases remarkably with increasing temperatures at a low frequency, which indicates a thermal ionic polarization. However, the frequency spectra becomes similar to Debye-type relaxation when the temperature is lower than room temperature and the low-and high-frequency relaxation step almost keeps unchanged with temperature, which reveals a feature of interface polarization and considerable temperature stability for CCTO. The relaxation revealed in the frequency spectra corresponds to the three different semicircles revealed by the impedance spectra, which indicated there are three inhomogeneous regions or polarization processes in CCTO ceramics and the colossal dielectric constant mainly comes from the extrinsic polarization of these inhomogenities. The activation energies are found to be respectively 0.05 eV, 0.58 eV and 0.49eV for the three different polarization processes by simulating the impedance semicircles using an equivalent circuit.
    • Funds:
    [1]

    [1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    [2]Ramirez A P, Subramanian, Gardel M 2000 Solid State Commun. 115 217

    [3]

    [3]Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    [4]Zhang J L, Zheng P, Wang C L, Zhao M L 2005 Appl. Phys. Lett. 87 142901

    [5]

    [5]Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [6]

    [6]Cao G H, Feng L X, Wang, C 2007 J. Phys. D: Appl. Phys. 40 2889

    [7]

    [7]Sinclair D C, Adams T A, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [8]

    [8]Adams T B, Sinclair D C, West A R 2002 Ade. Matter.18 1321

    [9]

    [9]Lunkenheimer P, Fichtl R, Ebbinghaus S G, Loidl A 2004 Phys. Rev. B 70 172102

    [10]

    ]Sun D L, Wu A Y, Yin S T 2008 J. Am. Ceram. Soc .91 169

    [11]

    ]Chung S Y, Kim I D, Kang S J L 2004 Nat. Mater. 3 774

    [12]

    ]Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [13]

    ]Li J, Cho K, Wu N, Ignatiev A 2004 IEEE Trans. Dielectr. Elect. Insul. 11 534

    [14]

    ]Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D: Appl. Phys. 38 1824

    [15]

    ]Adams T B, Sinclair D C, West A R 2006 J. Am. Ceram. Soc. 89 3129

    [16]

    ]Shao S F, Zheng P, Zhang J L, Niu K X, Wang C L, Zhong W L 2006 Acta Phys. Sin. 58 523 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 物理学报 55 6661]

    [17]

    ]He L, Neaton J B, Morrel H,Vanderbilt D 2002 Phys. Rev. B 65 21411

    [18]

    ]Ni L, Chen X M 2007 Appl. Phys. Lett . 91 122905

    [19]

    ]Yin G L, Li J Y, Li S T 2009 Acta Phys. Sin. 58 523 (in Chinese) [尹桂来、李建英、李盛涛 2009 物理学报 58 4219]

    [20]

    ]Krzysztof S, Wolfgang S, Gustav B, Rainer W 2006 Nat. Mater. 5 312

    [21]

    ]Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛、成鹏飞、赵雷、李建英 2009 物理学报 58 523]

    [22]

    ]Yang F X, Zhang D M, Deng Z W 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞、张端明、邓宗伟等 2008 物理学报 57 3840]

  • [1]

    [1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    [2]Ramirez A P, Subramanian, Gardel M 2000 Solid State Commun. 115 217

    [3]

    [3]Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    [4]Zhang J L, Zheng P, Wang C L, Zhao M L 2005 Appl. Phys. Lett. 87 142901

    [5]

    [5]Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [6]

    [6]Cao G H, Feng L X, Wang, C 2007 J. Phys. D: Appl. Phys. 40 2889

    [7]

    [7]Sinclair D C, Adams T A, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [8]

    [8]Adams T B, Sinclair D C, West A R 2002 Ade. Matter.18 1321

    [9]

    [9]Lunkenheimer P, Fichtl R, Ebbinghaus S G, Loidl A 2004 Phys. Rev. B 70 172102

    [10]

    ]Sun D L, Wu A Y, Yin S T 2008 J. Am. Ceram. Soc .91 169

    [11]

    ]Chung S Y, Kim I D, Kang S J L 2004 Nat. Mater. 3 774

    [12]

    ]Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [13]

    ]Li J, Cho K, Wu N, Ignatiev A 2004 IEEE Trans. Dielectr. Elect. Insul. 11 534

    [14]

    ]Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D: Appl. Phys. 38 1824

    [15]

    ]Adams T B, Sinclair D C, West A R 2006 J. Am. Ceram. Soc. 89 3129

    [16]

    ]Shao S F, Zheng P, Zhang J L, Niu K X, Wang C L, Zhong W L 2006 Acta Phys. Sin. 58 523 (in Chinese) [邵守福、郑鹏、张家良、钮效鹍、王春雷、钟维烈 2006 物理学报 55 6661]

    [17]

    ]He L, Neaton J B, Morrel H,Vanderbilt D 2002 Phys. Rev. B 65 21411

    [18]

    ]Ni L, Chen X M 2007 Appl. Phys. Lett . 91 122905

    [19]

    ]Yin G L, Li J Y, Li S T 2009 Acta Phys. Sin. 58 523 (in Chinese) [尹桂来、李建英、李盛涛 2009 物理学报 58 4219]

    [20]

    ]Krzysztof S, Wolfgang S, Gustav B, Rainer W 2006 Nat. Mater. 5 312

    [21]

    ]Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛、成鹏飞、赵雷、李建英 2009 物理学报 58 523]

    [22]

    ]Yang F X, Zhang D M, Deng Z W 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞、张端明、邓宗伟等 2008 物理学报 57 3840]

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [3] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [4] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] Zhang Zheng-Wei, Wang Gui-Lin, Zhang Shao-Long, Sun Qi-Zhi, Liu Wei, Zhao Xiao-Ming, Jia Yue-Song, Xie Wei-Ping. Application of electrical action to design and analysis of magnetically driven solid liner implosion. Acta Physica Sinica, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [6] The Influence of the magentic annealing temperature on the microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191942
    [7] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • Citation:
Metrics
  • Abstract views:  3075
  • PDF Downloads:  1055
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2009
  • Accepted Date:  10 September 2009
  • Published Online:  15 May 2010

Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12

  • 1. 湖北大学物理学与电子技术学院,铁电压电陶瓷与器件湖北省重点实验室,武汉 430062

Abstract: Pure colossal dielectric constant oxide CaCu3Ti4O12 (CCTO) compound was prepared by traditional ceramic processing. Dielectric dispersion and complex impedances spectra were investigated using a impedance analyzer within a temperature range of 10—420 K. The data were simulated by “ZVIEW” software. The result indicates that there are two obvious relaxations in the dielectric dispersion spectra when the temperature is higher than room temperature and the dielectric constant increases remarkably with increasing temperatures at a low frequency, which indicates a thermal ionic polarization. However, the frequency spectra becomes similar to Debye-type relaxation when the temperature is lower than room temperature and the low-and high-frequency relaxation step almost keeps unchanged with temperature, which reveals a feature of interface polarization and considerable temperature stability for CCTO. The relaxation revealed in the frequency spectra corresponds to the three different semicircles revealed by the impedance spectra, which indicated there are three inhomogeneous regions or polarization processes in CCTO ceramics and the colossal dielectric constant mainly comes from the extrinsic polarization of these inhomogenities. The activation energies are found to be respectively 0.05 eV, 0.58 eV and 0.49eV for the three different polarization processes by simulating the impedance semicircles using an equivalent circuit.

Reference (22)

Catalog

    /

    返回文章
    返回