Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of codoping of Al and Sb on structure and optical properties of ZnO nanorod ordered array thin films

Zhong Wen-Wu Liu Fa-Min Cai Lu-Gang Ding Peng Liu Xue-Quan Li Yi

Effects of codoping of Al and Sb on structure and optical properties of ZnO nanorod ordered array thin films

Zhong Wen-Wu, Liu Fa-Min, Cai Lu-Gang, Ding Peng, Liu Xue-Quan, Li Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An Al and Sb codoped ZnO nanorod ordered array thin film is deposited on a glass substrate with a ZnO seed layer by hydrothermal method. The XRD, SEM, TEM, and SAED results indicate that the thin film consists of nanorods growing in the direction vertical to the ZnO seed layer, and that the nanorods with an average diameter of 27.8 nm and length of 1.02 m consist of single crystalline wurtzite ZnO crystal growing along the [001] direction. Raman scattering analysis demonstrates that the Al and Sb codoped ZnO thin films with the concentrations of Al and Sb of 3.0 at%, 4.0 at%, 5.0 at%, 6.0 at% have Raman shifts of 3, 10, 14 and 12 cm-1 according to Raman shift 580 cm-1 of undoped ZnO nanorod thin film, respectively. Room temperature photoluminescence reveals that the emission intensity decreases at 545 nm and increases at 414 nm in ZnO film prepared by the codoping of Al and Sb. It is because the decrease of Oi and the increase of Zni are caused by the codoping of Al and Sb.
    • Funds:
    [1]

    Wang D Y, Gao S X, Li G, Zhao M 2010 Acta Phys. Sin. 59 3473 (in Chinese) [王德义、高书霞、李 刚、赵 鸣 2010 物理学报 59 3473]

    [2]
    [3]

    Cheng C W, Sie E J, Liu B, Huan C H A, Sum T C, Sun H D, Fan H J 2010 Appl. Phys. Lett. 96 071107

    [4]
    [5]

    Gao L, Zhang J M 2010 Acta Phys. Sin. 59 1263 (in Chinese) [高 立、张建民 2010 物理学报 59 1263]

    [6]

    Deng B, Sun H Q, Guo Z Y, Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓 贝、孙惠卿、郭志友、高小奇 2010 物理学报 59 1212]

    [7]
    [8]
    [9]

    Yang Y, Qi J J, Liao Q L, Zhang Y, Yan X Q, Huang Y H, Tang L D 2009 Appl. Phys. A 94 799

    [10]
    [11]

    Yamamoto T 2002 Thin Solid Films 420 100

    [12]
    [13]

    Sui Y R, Yao B, Yang J H, Gao L L, Yang T, Deng R, Ding M, Zhao T T, Huang X M, Pan H L, Shen D Z 2010 J. Lumine. 130 1101

    [14]
    [15]

    Wei S F, Lian J S, Wu H 2010 Mater. Charact. 61 1239

    [16]
    [17]

    Fuge G M, Holmes T M S, Ashfold M N R 2009 Chem. Phys. Lett. 479 125

    [18]

    Wu J J, Liu S C 2002 Adv. Mater. 14 215

    [19]
    [20]
    [21]

    Koh Y W, Lin M, Tan C K, Foo Y L, Loh K P 2004 J. Phys. Chem. B 108 11419

    [22]

    Song J J, Lim S W 2007 J. Phys. Chem. C 111 596

    [23]
    [24]

    Chien C T, Wu M C, Chen C W, Yang H H, Wu J J, Su W F, Lin C S, Chen Y F 2008 Appl. Phys. Lett. 92 223102

    [25]
    [26]
    [27]

    Han N, Wu X F, Chai L, Liu H D, Chen Q F 2010 Sensor Actuat. B: Chem. 150 230

    [28]

    Rajalakshmi M, Arora Akhilesh K, Bendre B S, Shailaja M 2000 J. Appl. Phys. 87 2445

    [29]
    [30]
    [31]

    Alim K A, Fonoberov V A, Balandin A A 2005 Appl. Phys. Lett. 86 053103

    [32]
    [33]

    Du G T, Ma Y, Zhang Y T, Yang T P 2005 Appl. Phys. Lett. 87 213103

    [34]
    [35]

    Permogorov S, Reznitsky A 1976 Solid State Commun. 18 781

    [36]
    [37]

    Samanta K, Bhattacharya P, Katiyar R S 2010 J. Appl. Phys. 108 113501

    [38]

    Kim H W, Kebede M A, Kim H S 2010 Current Appl. Phys. 10 60

    [39]
    [40]

    Bundersmann C, Ashkenov N, Schubert M, Spenmann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [41]
    [42]
    [43]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [44]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552

    [45]
    [46]
    [47]

    Lee M K, Tu H F 2007 J. Appl. Phys. 101 126103

    [48]
    [49]

    Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z, Yang C 2007 Physica B 388 145

    [50]
    [51]

    Roro K T, Dangbegnon J K, Sivaraya S, Leitch A W R, Botha J R 2008 J. Appl. Phys. 103 053516

    [52]

    Han N, Hu P, Zuo A H, Zhang D W, Tian Y J, Chen Y F 2010 Sensor Actuat. B: Chem. 145 114

    [53]
    [54]

    Cheng W, Wu P, Zou X, Xiao T 2006 J. Appl. Phys. 100 054311

    [55]
    [56]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112

    [57]
    [58]

    Studenikin S A, Golego N, Cocivera M 1998 J. Appl. Phys. 84 2287

    [59]
  • [1]

    Wang D Y, Gao S X, Li G, Zhao M 2010 Acta Phys. Sin. 59 3473 (in Chinese) [王德义、高书霞、李 刚、赵 鸣 2010 物理学报 59 3473]

    [2]
    [3]

    Cheng C W, Sie E J, Liu B, Huan C H A, Sum T C, Sun H D, Fan H J 2010 Appl. Phys. Lett. 96 071107

    [4]
    [5]

    Gao L, Zhang J M 2010 Acta Phys. Sin. 59 1263 (in Chinese) [高 立、张建民 2010 物理学报 59 1263]

    [6]

    Deng B, Sun H Q, Guo Z Y, Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓 贝、孙惠卿、郭志友、高小奇 2010 物理学报 59 1212]

    [7]
    [8]
    [9]

    Yang Y, Qi J J, Liao Q L, Zhang Y, Yan X Q, Huang Y H, Tang L D 2009 Appl. Phys. A 94 799

    [10]
    [11]

    Yamamoto T 2002 Thin Solid Films 420 100

    [12]
    [13]

    Sui Y R, Yao B, Yang J H, Gao L L, Yang T, Deng R, Ding M, Zhao T T, Huang X M, Pan H L, Shen D Z 2010 J. Lumine. 130 1101

    [14]
    [15]

    Wei S F, Lian J S, Wu H 2010 Mater. Charact. 61 1239

    [16]
    [17]

    Fuge G M, Holmes T M S, Ashfold M N R 2009 Chem. Phys. Lett. 479 125

    [18]

    Wu J J, Liu S C 2002 Adv. Mater. 14 215

    [19]
    [20]
    [21]

    Koh Y W, Lin M, Tan C K, Foo Y L, Loh K P 2004 J. Phys. Chem. B 108 11419

    [22]

    Song J J, Lim S W 2007 J. Phys. Chem. C 111 596

    [23]
    [24]

    Chien C T, Wu M C, Chen C W, Yang H H, Wu J J, Su W F, Lin C S, Chen Y F 2008 Appl. Phys. Lett. 92 223102

    [25]
    [26]
    [27]

    Han N, Wu X F, Chai L, Liu H D, Chen Q F 2010 Sensor Actuat. B: Chem. 150 230

    [28]

    Rajalakshmi M, Arora Akhilesh K, Bendre B S, Shailaja M 2000 J. Appl. Phys. 87 2445

    [29]
    [30]
    [31]

    Alim K A, Fonoberov V A, Balandin A A 2005 Appl. Phys. Lett. 86 053103

    [32]
    [33]

    Du G T, Ma Y, Zhang Y T, Yang T P 2005 Appl. Phys. Lett. 87 213103

    [34]
    [35]

    Permogorov S, Reznitsky A 1976 Solid State Commun. 18 781

    [36]
    [37]

    Samanta K, Bhattacharya P, Katiyar R S 2010 J. Appl. Phys. 108 113501

    [38]

    Kim H W, Kebede M A, Kim H S 2010 Current Appl. Phys. 10 60

    [39]
    [40]

    Bundersmann C, Ashkenov N, Schubert M, Spenmann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 Appl. Phys. Lett. 83 1974

    [41]
    [42]
    [43]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [44]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552

    [45]
    [46]
    [47]

    Lee M K, Tu H F 2007 J. Appl. Phys. 101 126103

    [48]
    [49]

    Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z, Yang C 2007 Physica B 388 145

    [50]
    [51]

    Roro K T, Dangbegnon J K, Sivaraya S, Leitch A W R, Botha J R 2008 J. Appl. Phys. 103 053516

    [52]

    Han N, Hu P, Zuo A H, Zhang D W, Tian Y J, Chen Y F 2010 Sensor Actuat. B: Chem. 145 114

    [53]
    [54]

    Cheng W, Wu P, Zou X, Xiao T 2006 J. Appl. Phys. 100 054311

    [55]
    [56]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112

    [57]
    [58]

    Studenikin S A, Golego N, Cocivera M 1998 J. Appl. Phys. 84 2287

    [59]
  • [1] Cai Wei, Wu Xiang, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [2] Zhang Hong-Yu, Zhang Shao-Hua, Liang He, Liu Yu-Hong, Luo Jian-Bin. Molecular alignment of nano-thin film using Raman spectroscopy. Acta Physica Sinica, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [3] Zhang Huan, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Zhou Chuan-Cang. Preparation,structure and ferromagnetic properties of BiFeO3 nano-power. Acta Physica Sinica, 2010, 59(3): 2078-2084. doi: 10.7498/aps.59.2078
    [4] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [5] Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo. Confocal-cavity-enhanced Raman scattering of ambient air. Acta Physica Sinica, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [6] Bauer-Grosse E., Zhang Qing-Yu, Liu Yan-Yan. Structure and growth behavior of low N-doped diamond film by microwave plasma assisted chemical vapor deposition. Acta Physica Sinica, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [7] Liu Fa-Min, Zhong Wen-Wu, Ding Peng, Cai Lu-Gang, Zhou Chuan-Cang, Zeng Le-Gui. Preparationand structure and optical-electrical properties of the Nb/SnO2 composite thin film. Acta Physica Sinica, 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [8] Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan. Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique. Acta Physica Sinica, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [9] Chen Jing, Shen Wen-Zhong, Cao Chun-Fang, Wu Hui-Zhen, Si Jian-Xiao, Xu Tian-Ning. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [10] Zhu Xiu-Hong, Chen Guang-Hua, Ding Yi, He De-Yan, Liu Guo-Han. Preparation and characterization of hydrogenated microcrystalline silicon films by HW-MWECR-CVD. Acta Physica Sinica, 2006, 55(11): 6147-6151. doi: 10.7498/aps.55.6147
    [11] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [12] Fan Zhi-Dong, Bai Zhen-Hua, Ma Lei, Peng Ying-Cai. Controlled growth of silicon nanowires by solid-liquid-solid method and their formation mechanism. Acta Physica Sinica, 2010, 59(2): 1169-1174. doi: 10.7498/aps.59.1169
    [13] Ying Li-Zhen, Zhao Xin-Sheng, Zhang Ji-Cai, Dai Lun, Qin Guo-Gang. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [14] Zhao Jian-Hua, Chen Bo, Wang De-Liang. Anharmonic phonon coupling and phonon confinement in nanocrystalline anatase TiO2. Acta Physica Sinica, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [15] Su Yuan-Jun, Xu Jun, Zhu Ming, Fan Peng-Hui, Dong Chuang. Hydrogenated poly-crystalline silicon thin films deposited by inductively coupled plasma assisted pulsed dc twin magnetron sputtering. Acta Physica Sinica, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [16] Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [17] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [18] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [19] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [20] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
  • Citation:
Metrics
  • Abstract views:  3763
  • PDF Downloads:  474
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2010
  • Accepted Date:  17 February 2011
  • Published Online:  15 November 2011

Effects of codoping of Al and Sb on structure and optical properties of ZnO nanorod ordered array thin films

  • 1. Department of Physics, School of Physics and Nuclear Energy Engineering, Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Ministry of Education,Beihang University, Beijing 100191, China;
  • 2. Central Iron and Steel Research Institute, Beijing 100081, China

Abstract: An Al and Sb codoped ZnO nanorod ordered array thin film is deposited on a glass substrate with a ZnO seed layer by hydrothermal method. The XRD, SEM, TEM, and SAED results indicate that the thin film consists of nanorods growing in the direction vertical to the ZnO seed layer, and that the nanorods with an average diameter of 27.8 nm and length of 1.02 m consist of single crystalline wurtzite ZnO crystal growing along the [001] direction. Raman scattering analysis demonstrates that the Al and Sb codoped ZnO thin films with the concentrations of Al and Sb of 3.0 at%, 4.0 at%, 5.0 at%, 6.0 at% have Raman shifts of 3, 10, 14 and 12 cm-1 according to Raman shift 580 cm-1 of undoped ZnO nanorod thin film, respectively. Room temperature photoluminescence reveals that the emission intensity decreases at 545 nm and increases at 414 nm in ZnO film prepared by the codoping of Al and Sb. It is because the decrease of Oi and the increase of Zni are caused by the codoping of Al and Sb.

Reference (59)

Catalog

    /

    返回文章
    返回