Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias

Chen Shuang-Hong Weng Jian Wang Li-Jun Zhang Chang-Neng Huang Yang Jiang Nian-Quan Dai Song-Yuan

The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias

Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan
PDF
Get Citation
  • Dye-sensitized solar cell (DSC) modules are most likely to work for long time under negative bias due to the mismatch in the outdoor usage, which can obviously influence the cell performance. In this paper, the interface property of DSC under negative bias is investigated by Raman spectroscopy, electrochemical impedance spectroscopy and incident-photon-to-electron conversion efficiency (IPCE). The results of Raman spectroscopy indicate that the decreased peak intensity at 167 cm-1 (the oxidized state of N719 (D+)/ I3-) after 1000 h could be due to Li+ ions diffusing into the TiO2 electrode and partially being intercalated into the TiO2 film. It is also found that the increased recombination resistance in the interface of TiO2/electrolyte resultes in the improved open-circuit voltage and the decreased IPCE values, leading to reduced short-circuit current for DSC with base electrolyte under the long-term negative bias. However, when BI is added into the base electrolyte, the Raman spectrum shows no significant change and that the cell efficiency remains stable after 1000 h. The reason is that BI could prevent Li+ ions from being intercalated into the TiO2 film. It is proven by the further experiments where the DSC with BI exhibits better stability under different negative biases.
    • Funds:
    [1]

    Oregan B, Gratzel M 1991 Nature 353 737

    [2]

    Chen C Y,Wang M K,Li J Y,Pootrakulchote N,Alibabaei L,Ngoc-le C,Decoppet J D,Tsai J H,Gratzel C,Wu C G,Zakeeruddin S M,Gratzel M 2009 ACS Nano. 3 3103

    [3]
    [4]

    Gratzel M 2004 J. Photochem. Photobiol. A 164 3

    [5]
    [6]
    [7]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [8]

    Gratzel M 2005 Chem. Lett. 34 8

    [9]
    [10]
    [11]

    Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H 2006 J. Phys. Chem. B 110 25210

    [12]
    [13]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [14]
    [15]

    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N 2004 J. Photochem. Photobiol. A 164 193

    [16]

    Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J 2001 Prog. Photovolt.: Res. Appl. 9 425

    [17]
    [18]
    [19]

    Harikisun R, Desilvestro H 2011 Sol. Energy 85 1179

    [20]

    Wheatley M G, McDonagh A M, Brungs M P, Chaplin R P, Sizgek E 2003 Sol. Energy Mater. Sol. Cells 76 175

    [21]
    [22]
    [23]

    Sastrawan R, Renz J, Prahl C, Beier J, Hinsch A, Kern R 2006 J. Photochem. Photobiol. A 178 33

    [24]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]

    [25]
    [26]
    [27]

    Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gratzel M 2001 J. Am. Chem. Soc. 123 1613

    [28]

    Shi C W, Dai S Y, Wang K J, Guo L, Pan X, Kong F T, Hu L H 2005 Acta Phys. Chim. Sin. 21 534 (in Chinese) [史成武、戴松元、王孔嘉、郭 力、潘 旭、孔凡太、胡林华 2005 物理化学学报 21 534]

    [29]
    [30]

    Stergiopoulos T, Bernard M C, Goff A H L, Falaras P 2004 Coord. Chem. Rev. 248 1407

    [31]
    [32]
    [33]

    Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307

    [34]
    [35]

    van de Krol R, Goossens A, Meulenkamp E A 2001 J. Appl. Phys. 90 2235

    [36]

    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S 2005 J. Phys. Chem. B 109 3480

    [37]
  • [1]

    Oregan B, Gratzel M 1991 Nature 353 737

    [2]

    Chen C Y,Wang M K,Li J Y,Pootrakulchote N,Alibabaei L,Ngoc-le C,Decoppet J D,Tsai J H,Gratzel C,Wu C G,Zakeeruddin S M,Gratzel M 2009 ACS Nano. 3 3103

    [3]
    [4]

    Gratzel M 2004 J. Photochem. Photobiol. A 164 3

    [5]
    [6]
    [7]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [8]

    Gratzel M 2005 Chem. Lett. 34 8

    [9]
    [10]
    [11]

    Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H 2006 J. Phys. Chem. B 110 25210

    [12]
    [13]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [14]
    [15]

    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N 2004 J. Photochem. Photobiol. A 164 193

    [16]

    Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J 2001 Prog. Photovolt.: Res. Appl. 9 425

    [17]
    [18]
    [19]

    Harikisun R, Desilvestro H 2011 Sol. Energy 85 1179

    [20]

    Wheatley M G, McDonagh A M, Brungs M P, Chaplin R P, Sizgek E 2003 Sol. Energy Mater. Sol. Cells 76 175

    [21]
    [22]
    [23]

    Sastrawan R, Renz J, Prahl C, Beier J, Hinsch A, Kern R 2006 J. Photochem. Photobiol. A 178 33

    [24]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]

    [25]
    [26]
    [27]

    Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gratzel M 2001 J. Am. Chem. Soc. 123 1613

    [28]

    Shi C W, Dai S Y, Wang K J, Guo L, Pan X, Kong F T, Hu L H 2005 Acta Phys. Chim. Sin. 21 534 (in Chinese) [史成武、戴松元、王孔嘉、郭 力、潘 旭、孔凡太、胡林华 2005 物理化学学报 21 534]

    [29]
    [30]

    Stergiopoulos T, Bernard M C, Goff A H L, Falaras P 2004 Coord. Chem. Rev. 248 1407

    [31]
    [32]
    [33]

    Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307

    [34]
    [35]

    van de Krol R, Goossens A, Meulenkamp E A 2001 J. Appl. Phys. 90 2235

    [36]

    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S 2005 J. Phys. Chem. B 109 3480

    [37]
  • [1] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Kong Fan-Tai, Hu Lin-Hua, Pan Xu, Shi Cheng-Wu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [2] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [3] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [4] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [5] Kou Dong-Xing, Jiang Nian-Quan, Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [6] Kou Dong-Xing, Jiang Nian-Quan, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [7] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [8] Wu Bao-Shan, Wang Lin-Lin, Wang Yong-Mei, Ma Ting-Li. Study of influencing factors for performance of large-scale dye-sensitized solar cells based on the semi-empirical model. Acta Physica Sinica, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [9] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [10] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
  • Citation:
Metrics
  • Abstract views:  1640
  • PDF Downloads:  627
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2011
  • Accepted Date:  08 August 2011
  • Published Online:  15 December 2011

The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias

  • 1. Key Laboratory of Novel Thin Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
  • 2. College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Abstract: Dye-sensitized solar cell (DSC) modules are most likely to work for long time under negative bias due to the mismatch in the outdoor usage, which can obviously influence the cell performance. In this paper, the interface property of DSC under negative bias is investigated by Raman spectroscopy, electrochemical impedance spectroscopy and incident-photon-to-electron conversion efficiency (IPCE). The results of Raman spectroscopy indicate that the decreased peak intensity at 167 cm-1 (the oxidized state of N719 (D+)/ I3-) after 1000 h could be due to Li+ ions diffusing into the TiO2 electrode and partially being intercalated into the TiO2 film. It is also found that the increased recombination resistance in the interface of TiO2/electrolyte resultes in the improved open-circuit voltage and the decreased IPCE values, leading to reduced short-circuit current for DSC with base electrolyte under the long-term negative bias. However, when BI is added into the base electrolyte, the Raman spectrum shows no significant change and that the cell efficiency remains stable after 1000 h. The reason is that BI could prevent Li+ ions from being intercalated into the TiO2 film. It is proven by the further experiments where the DSC with BI exhibits better stability under different negative biases.

Reference (37)

Catalog

    /

    返回文章
    返回