Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystallization and microstructure change of semiconductor active thin layer in polymer organic field-effect transistors

Yao Jiang-Feng Jia Quan-Jie Chen Yu Tian Xue-Yan Zhao Su-Ling Xu Zheng Zhang Fu-Jun Fan Xing Gong Wei

Crystallization and microstructure change of semiconductor active thin layer in polymer organic field-effect transistors

Yao Jiang-Feng, Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Zhao Su-Ling, Xu Zheng, Zhang Fu-Jun, Fan Xing, Gong Wei
PDF
Get Citation
  • The crystallization and microstructure change of self-organization and the related conduction mechanisms of polymer semiconductor active thin layer in polymer organic field-effect transistors (OFET) are investigated by synchrotron radiation grazing incident X-ray diffraction (GIXRD) for understanding the relationships between polymer self-organization and charge carry. The change of the crystalline microstructure of RR-P3HT clarifies the effect of SAMs for improving the interface between the insulator layer and the organic semiconductor layer. The self-organiztion of RR-P3HT modified by SAMs improves the crystalliztion to pack form the thiophene rings along the perpendicular direction of substrate and results in that the π-π interchains are stacked to parallel the substrate. The two-dimensional charge transport is improved. Furthermore, we find that two-dimensional, conjugated, and self-organized crystalline lamellae are easier to gain with slow grown film than with fast grown film.
    • Funds:
    [1]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Huang J Z, Huang J Y, Tian X Y, Xu X R 2008 Chin. Phys. B 17 3822

    [2]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H, Xu X R 2008 Chin. Phys. B 17 1887

    [3]

    Tian X Y, Xu Z, Zhao S L, Zhang F J, Xu X R, Yuan G C, Li J, Sun Q J 2008 Chin. Phys. B 19 018103

    [4]

    Killampalli A S, Engstrom J R 2006 Appl. Phys. Lett. 88 143125

    [5]

    DiBenedetto S A, Facchetti A, Ratner M A, Marks T J 2009 Adv. Mater. 21 1407

    [6]

    Possanner S K, Zojer K, Pacher P, Zojer E, Schürrer F 2009 Adv. Func. Mater. 19 958

    [7]

    Sirringhaus H 2009 Proceedings of the IEEE 97 1570

    [8]

    Bao Z, Dodabalapur A, Lovinger A J 1996 Appl. Phys. Lett. 69 4108

    [9]

    Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M 1999 Nature 401 685

    [10]

    Lan Y K, Huang C 2008 J. Phys. Chem. B 112 14857

    [11]

    Ong B S, Wu Y, Liu P, Gardner S 2004 J. Am. Chem. Soc. 126 3378

    [12]

    Jiang X M, Jia Q J, Zheng W L, Liu P, Xi D C, Jiang Z M, Wang X 2000 High Energy Phys. Nucl. Phys. 24 424 (in Chinese) [姜晓明、贾全杰、郑文莉、刘 鹏、冼鼎昌、蒋最敏、王 迅 2000 高能物理与核物理 24 424]

    [13]

    Cowley R A, Ryan T W 1987 J. Phys. D: Appl. Phys. 20 61

    [14]

    Gay J M, Stocker P, Rhemore F 1993 J. Appl. Phys 73 816

    [15]

    Fuoss P H, Liang K S, Eisenberger P 1989 Synchrotron Radiation Research: Advances in Surface Science( New York: Plenum Press)

    [16]

    Xia Z F, Qiu X L, Zhu J Q, Zhang Z W 2002 Piezoelectrics and Acoustooptics 24 208 (in Chinese) [夏钟福、邱勋林、朱伽倩、张冶文2002 压电与声光 24 208]

    [17]

    Mcculloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sprarrowe D, Wagnger R, Zhang W, Chabinyc M L, Kline R J, Mcgehee M D, Toney M F 2006 Nature Materials 5 328

    [18]

    Oss C J V, Giese Jr R F, Good R J 1990 Langmuir 6 1711

    [19]

    Zhang J D, Mo Z S 2009 University Chem. 24 1(in Chinese) [张吉东、莫志深2009大学化学24 1]

    [20]

    Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I, Moon D G, Park S, Chang T, Chang C, Joo M, Ryu C Y 2005 Adv. Funct. Mater. 15 77

    [21]

    Loo Y 2007 AIChE Journal 53 1066

    [22]

    Kline R J, Mcgehee M D, Toney M F 2006 Nature Materials 5 222

    [23]

    Chang J F, Sun B, Breiby D W, Nielsen M M, Slling T I, Giles M, McCulloch I, Sirringhaus H 2004 Chem. Mater. 16 4772

    [24]

    Sun B, Kang C Y, Li R P, Liu Z L, Tang J, Xu P S, Pan G Q 2009 Nucl. Tech. 32 492 (in Chinese) [孙 柏、康朝阳、李锐鹏、刘忠良、唐 军、徐彭寿、潘国强 2009核技术32 492]

    [25]

    Verilhac J M, Blevennec G L, Djurado D, Rieutord F, Chouiki M, Travers J P, Pron A 2006 Synth. Met. 156 815

    [26]

    Yang H, LeFevre S W, Ryu C Y, Bao Z 2007 Appl. Phys. Lett.90 172116

  • [1]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Huang J Z, Huang J Y, Tian X Y, Xu X R 2008 Chin. Phys. B 17 3822

    [2]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H, Xu X R 2008 Chin. Phys. B 17 1887

    [3]

    Tian X Y, Xu Z, Zhao S L, Zhang F J, Xu X R, Yuan G C, Li J, Sun Q J 2008 Chin. Phys. B 19 018103

    [4]

    Killampalli A S, Engstrom J R 2006 Appl. Phys. Lett. 88 143125

    [5]

    DiBenedetto S A, Facchetti A, Ratner M A, Marks T J 2009 Adv. Mater. 21 1407

    [6]

    Possanner S K, Zojer K, Pacher P, Zojer E, Schürrer F 2009 Adv. Func. Mater. 19 958

    [7]

    Sirringhaus H 2009 Proceedings of the IEEE 97 1570

    [8]

    Bao Z, Dodabalapur A, Lovinger A J 1996 Appl. Phys. Lett. 69 4108

    [9]

    Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M 1999 Nature 401 685

    [10]

    Lan Y K, Huang C 2008 J. Phys. Chem. B 112 14857

    [11]

    Ong B S, Wu Y, Liu P, Gardner S 2004 J. Am. Chem. Soc. 126 3378

    [12]

    Jiang X M, Jia Q J, Zheng W L, Liu P, Xi D C, Jiang Z M, Wang X 2000 High Energy Phys. Nucl. Phys. 24 424 (in Chinese) [姜晓明、贾全杰、郑文莉、刘 鹏、冼鼎昌、蒋最敏、王 迅 2000 高能物理与核物理 24 424]

    [13]

    Cowley R A, Ryan T W 1987 J. Phys. D: Appl. Phys. 20 61

    [14]

    Gay J M, Stocker P, Rhemore F 1993 J. Appl. Phys 73 816

    [15]

    Fuoss P H, Liang K S, Eisenberger P 1989 Synchrotron Radiation Research: Advances in Surface Science( New York: Plenum Press)

    [16]

    Xia Z F, Qiu X L, Zhu J Q, Zhang Z W 2002 Piezoelectrics and Acoustooptics 24 208 (in Chinese) [夏钟福、邱勋林、朱伽倩、张冶文2002 压电与声光 24 208]

    [17]

    Mcculloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sprarrowe D, Wagnger R, Zhang W, Chabinyc M L, Kline R J, Mcgehee M D, Toney M F 2006 Nature Materials 5 328

    [18]

    Oss C J V, Giese Jr R F, Good R J 1990 Langmuir 6 1711

    [19]

    Zhang J D, Mo Z S 2009 University Chem. 24 1(in Chinese) [张吉东、莫志深2009大学化学24 1]

    [20]

    Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I, Moon D G, Park S, Chang T, Chang C, Joo M, Ryu C Y 2005 Adv. Funct. Mater. 15 77

    [21]

    Loo Y 2007 AIChE Journal 53 1066

    [22]

    Kline R J, Mcgehee M D, Toney M F 2006 Nature Materials 5 222

    [23]

    Chang J F, Sun B, Breiby D W, Nielsen M M, Slling T I, Giles M, McCulloch I, Sirringhaus H 2004 Chem. Mater. 16 4772

    [24]

    Sun B, Kang C Y, Li R P, Liu Z L, Tang J, Xu P S, Pan G Q 2009 Nucl. Tech. 32 492 (in Chinese) [孙 柏、康朝阳、李锐鹏、刘忠良、唐 军、徐彭寿、潘国强 2009核技术32 492]

    [25]

    Verilhac J M, Blevennec G L, Djurado D, Rieutord F, Chouiki M, Travers J P, Pron A 2006 Synth. Met. 156 815

    [26]

    Yang H, LeFevre S W, Ryu C Y, Bao Z 2007 Appl. Phys. Lett.90 172116

  • [1] Yao Jiang-Feng, Zhao Su-Ling, Xu Zheng, Zhang Fu-Jun, Tian Xue-Yan. Non-solvent addition induced self-organization for enhancement of performance of poly(3-hexylthiophene) organic field-effect transistors. Acta Physica Sinica, 2011, 60(3): 037201. doi: 10.7498/aps.60.037201
    [2] Yao Jiang-Feng, Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Zhao Su-Ling, Xu Zheng, Zhang Fu-Jun, Gong Wei, Fan Xing. Study of crystalline structure change of annealing-induced self-organization in polymer field-effect transistors. Acta Physica Sinica, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [3] Wu Zhong-Hua, Sun Guang-Ai, Chen Bo, Yan Guan-Yun, Huang Chao-Qiang, Liu Yi, Wang Jie, Wu Er-Dong, Li Wu-Hui. Small angle X-ray scattering study of the microstructure and interface characteristics of single crystal superalloys during creep process. Acta Physica Sinica, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [4] Yang Yan, Li Sheng-Tao. Microstructure and DC conduction properties of CaCu3Ti4O12. Acta Physica Sinica, 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [5] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [6] Hou Zhao-Yang, Liu Rang-Su, Tian Ze-An, Liu Li-Xia. Simulation of evolution mechanisms of microstructures during rapid solidification of Al-Mg alloy melt. Acta Physica Sinica, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [7] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [8] Zhu Cai-Zhen, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin, Zhang Pei-Xin, Xu Qi-Ming. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [9] Shao Shou-Fu, Zheng Peng, Zhang Jia-Liang, Niu Xiao-Kun, Wang Chun-Lei, Zhong Wei-Lie. Microstructures and electrical properties of CaCu3Ti4O12 ceramics. Acta Physica Sinica, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [10] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [11] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [12] Yu Song-Nan, Wu Han-Hua, Chen Gen-Yu, Yuan Xin, Li Yue. Effect of Al(OH)3 sol concentration on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [13] Pan Meng-Xiao, Cao Xing-Zhong, Li Yang-Xian, Wang Bao-Yi, Xue De-Sheng, Ma Chuang-Xin, Zhou Chun-Lan, Wei Long. Microstructural features of DC sputtered vanadium oxide thin films. Acta Physica Sinica, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [14] Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Guan Qing-Feng, An Chun-Xiang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [15] Guan Qing-Feng, Chen Bo, Fan Xian-Hong. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [16] Duan Fang-Li, Wang Ming, Liu Jing. Microstructure changes of amorphous polymer film induced by friction. Acta Physica Sinica, 2015, 64(6): 066801. doi: 10.7498/aps.64.066801
    [17] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [18] Yan Dian-Ran, He Ji-Ning, Chen Guang-Liang, Gu Wei-Chao, Zhang Gu-Ling, Liu Chi-Zi, Yang Si-Ze, Feng Wen-Ran. Hardness and microstructure of the nanocrystallined TiN coating by reactive plasma spray. Acta Physica Sinica, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [19] Yang Hai-Bo, Hu Ming, Zhang Wei, Zhang Xu-Rui, Li De-Jun, Wang Ming-Xia. Nanoindentation investigation of the hardness and Young’s modulus of porous silicon depending on microstructure. Acta Physica Sinica, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [20] Lian Fa-Zeng, Hu Zhi-Hua, Zhu Ming-Gang, Li Wei. The microstructure and impact toughness of sintered Nd-Fe-B magnets. Acta Physica Sinica, 2008, 57(2): 1202-1206. doi: 10.7498/aps.57.1202
  • Citation:
Metrics
  • Abstract views:  4392
  • PDF Downloads:  897
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2010
  • Accepted Date:  24 June 2010
  • Published Online:  15 February 2011

Crystallization and microstructure change of semiconductor active thin layer in polymer organic field-effect transistors

  • 1. (1)Beijing Asahi Glass Electronics Co. , Ltd. , Beijing 100016, China; (2)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (3)Key Laboratory of Luminescence and Optical Information of Ministry of Education, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract: The crystallization and microstructure change of self-organization and the related conduction mechanisms of polymer semiconductor active thin layer in polymer organic field-effect transistors (OFET) are investigated by synchrotron radiation grazing incident X-ray diffraction (GIXRD) for understanding the relationships between polymer self-organization and charge carry. The change of the crystalline microstructure of RR-P3HT clarifies the effect of SAMs for improving the interface between the insulator layer and the organic semiconductor layer. The self-organiztion of RR-P3HT modified by SAMs improves the crystalliztion to pack form the thiophene rings along the perpendicular direction of substrate and results in that the π-π interchains are stacked to parallel the substrate. The two-dimensional charge transport is improved. Furthermore, we find that two-dimensional, conjugated, and self-organized crystalline lamellae are easier to gain with slow grown film than with fast grown film.

Reference (26)

Catalog

    /

    返回文章
    返回