Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and magnetic properties of Pr2Fe14(C, B)/α-(Fe, Co)-type nanocomposite ribbons

Li An-Hua Lai Bin Wang Hui-Jie Zhu Ming-Gang Li Wei

Structure and magnetic properties of Pr2Fe14(C, B)/α-(Fe, Co)-type nanocomposite ribbons

Li An-Hua, Lai Bin, Wang Hui-Jie, Zhu Ming-Gang, Li Wei
PDF
Get Citation
  • The phase evolution, microstructure and magnetic properties of PrxFe82-x-yTiyCo10B4C4 (x=9—10.5; y=0, 2) melt-spun ribbons have been investigated. All ribbons are mainly comprised of the 2 ∶14 ∶1, 2 ∶17 and α-(Fe, Co) phases. For the group of Ti-free ribbons (y=0), the coercivity increases with increasing x while the remanence decreases with increasing x. When 2 at.%Ti is substituted for Fe in the Ti-free ribbons, the magnetic properties are remarkably enhanced. The coercivity and squareness of demagnetization curve of the Ti-substitution ribbons are substantially improved without a sacrifice of remanence (except for x=9), the remanence even obviously increases at x=10.5. The optimal magnetic properties of Br=9.6 kGs (1 Gs=10-4T), iHc =10.2 kOe (1 Oe=79.5775 A/m), (BH)max=17.4 MGOe have been obtained in Ti-substituted Pr10.5Fe69.5Ti2Co10B4C4 group. The volume fraction of the 2 ∶14 ∶1 phase increases with increasing x, which leads to an increase of coercivity. Ti-substitution suppresses the grain growth of α-(Fe, Co) phase during annealing process, which makes the volume ratio of magnetically hard phase and soft phase and grain size tend to have optimal values, and the intergranular exchange coupling substantially enhances.
    • Funds:
    [1]

    Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812

    [3]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [4]

    Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859

    [5]

    Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315

    [6]

    Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]

    [7]

    Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]

    [8]

    Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]

    [9]

    Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100

    [10]

    Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112

    [11]

    Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167

    [12]

    Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263

    [13]

    Xing F, Ho W W 1990 J. Appl. Phys. 67 4604

    [14]

    Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223

    [15]

    Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349

    [16]

    Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704

    [17]

    Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231

    [18]

    Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627

    [19]

    Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403

    [20]

    Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647

    [21]

    Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316

    [22]

    Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769

    [23]

    Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388

    [24]

    Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201

    [25]

    Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129

  • [1]

    Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812

    [3]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [4]

    Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859

    [5]

    Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315

    [6]

    Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 物理学报 57 3823]

    [7]

    Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 物理学报 53 3171]

    [8]

    Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 物理学报 57 526]

    [9]

    Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100

    [10]

    Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112

    [11]

    Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167

    [12]

    Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263

    [13]

    Xing F, Ho W W 1990 J. Appl. Phys. 67 4604

    [14]

    Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223

    [15]

    Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349

    [16]

    Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704

    [17]

    Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231

    [18]

    Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627

    [19]

    Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403

    [20]

    Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647

    [21]

    Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316

    [22]

    Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769

    [23]

    Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388

    [24]

    Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201

    [25]

    Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129

  • [1] Liu Xian-Song, Zhong Wei, Jiang Hong-Ying, Gu Ben-Xi, Du You-Wei, Yang Sen. . Acta Physica Sinica, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
    [2] LI WEI, DONG SHENG-ZHI, LI XIU-MEI, ZHU MING-GANG. THE EFFECT ON THE MAGNETIC PROPERTIES OF THE DUAL-PHASE NANOCRYSTALLINE Nd(Fe,Co)B BONDED MAGNETS BY ADDING Ga. Acta Physica Sinica, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [3] Ao Qi, Zhang Wa-Li, Zhang Yi, Wu Jian-Sheng. Nanostructure and hard magnetic properties of exchange coupled Nd-Fe-B/FeCo multilayer films. Acta Physica Sinica, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [4] Ao Qi, Zhang Wa-Li, Zhang Yi, Wu Jian-Sheng. Preparation and magnetic properties of nanocomposite Nd28Fe66B6 /Fe50Co50 bilayer films. Acta Physica Sinica, 2005, 54(10): 4889-4893. doi: 10.7498/aps.54.4889
    [5] Shi Hui-Gang, Si Ming-Su, Xue De-Sheng. Coercivity mechanism of segmented (A/B)m composite nanowire arrays. Acta Physica Sinica, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [6] Wang Yi-Jun, Liu Yang, Yu Guang-Hua. Effect of Pt spacers on interface exchange coupling in ferromagnetic/antiferromagnetic bilayers. Acta Physica Sinica, 2012, 61(16): 167503. doi: 10.7498/aps.61.167503
    [7] Gu Yong-Quan, Li Wei, Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [8] Pang Li-Jia, Sun Guang-Fei, Chen Ju-Fang, Qiang Wen-Jiang, Zhang Jin-Biao, Li Wen-An. Study of magnetic properties of Pr2Fe14B/α-Fe nanocomposite magnets. Acta Physica Sinica, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [9] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [10] Feng Qian, Huang Zhi-Gao, Du You-Wei. Monter-Carlo simulation of surface magnetism of multilayered films. Acta Physica Sinica, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
  • Citation:
Metrics
  • Abstract views:  3314
  • PDF Downloads:  715
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2010
  • Accepted Date:  26 May 2010
  • Published Online:  15 February 2011

Structure and magnetic properties of Pr2Fe14(C, B)/α-(Fe, Co)-type nanocomposite ribbons

  • 1. Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081,China

Abstract: The phase evolution, microstructure and magnetic properties of PrxFe82-x-yTiyCo10B4C4 (x=9—10.5; y=0, 2) melt-spun ribbons have been investigated. All ribbons are mainly comprised of the 2 ∶14 ∶1, 2 ∶17 and α-(Fe, Co) phases. For the group of Ti-free ribbons (y=0), the coercivity increases with increasing x while the remanence decreases with increasing x. When 2 at.%Ti is substituted for Fe in the Ti-free ribbons, the magnetic properties are remarkably enhanced. The coercivity and squareness of demagnetization curve of the Ti-substitution ribbons are substantially improved without a sacrifice of remanence (except for x=9), the remanence even obviously increases at x=10.5. The optimal magnetic properties of Br=9.6 kGs (1 Gs=10-4T), iHc =10.2 kOe (1 Oe=79.5775 A/m), (BH)max=17.4 MGOe have been obtained in Ti-substituted Pr10.5Fe69.5Ti2Co10B4C4 group. The volume fraction of the 2 ∶14 ∶1 phase increases with increasing x, which leads to an increase of coercivity. Ti-substitution suppresses the grain growth of α-(Fe, Co) phase during annealing process, which makes the volume ratio of magnetically hard phase and soft phase and grain size tend to have optimal values, and the intergranular exchange coupling substantially enhances.

Reference (25)

Catalog

    /

    返回文章
    返回