Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study on characteristics of gliding arc discharge

Wang Yu Li Xiao-Dong Yu Liang Yan Jian-Hua

Numerical simulation study on characteristics of gliding arc discharge

Wang Yu, Li Xiao-Dong, Yu Liang, Yan Jian-Hua
PDF
Get Citation
  • The arc temperature field, electric field and size of conducting zone of gliding arc plasma are important parameters to determine the temperature and density of the electrons, the chemical reaction rates and energy efficiency. Electrical parameters of a 50 Hz ac gliding arc discharge were measured under conditions of two gas flow rates, 1.43 L/min and 6.42 L/min. An instantaneous model which was used to describe the energy transfer of gliding arc discharge was simplified by using an approximate expression for the electrical conductivity and diffusivity of plasma, which ravelled out the moving boundary in the gliding arc simulation resulting from variation of arc structure. The current density, electric field, dynamic temperature field and the structure of ac gliding arc was calculated. The electric field strength from the simulation result of the model was in agreement with the experimental data. According to the calculational result, the temperature on the axis of arc reached as high as 5700—6700 K. It showed the gas flow directly affected the arc structure and current density, thus further affected the electric field strength and temperature distribution. The electric field strength increased firstly and then decreased during a discharge period.
    • Funds:
    [1]

    Qiu L, Meng Y D, Ren Y X, Zhong S F 2006 Acta Phys. Sin. 55 5872 (in Chinese) [裘 亮、 孟月东、 任兆杏、 钟少锋 2006 物理学报 55 5872]

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、 黄 骏、 刘筱娣、 彭 磊、 孙 岳、 陈 维、 冯克成、 杨思泽 2009 物理学报 58 1595]

    [3]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧、 阳 林、 涂恩来、 陈建阳、 朱展文、 王晓蕾 2010物理学报 59 2610]

    [4]

    Liu L Y, Zhang J L, Guo Q C, Wang D Z 2010 Acta Phys. Sin. 59 2653 (in Chinese) [刘莉莹、 张家良、 郭卿超、 王德真 2010 物理学报 59 2653]

    [5]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [6]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [7]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [8]

    Kuznetsova I, Kalashnikov N, Gutsol A, Fridman A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [9]

    Pellerin S, Richard F, Chapelle J, Cormier J M, Musiol K 2000 J. Phys. D: Appl. Phys. 33 2407

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Phillips R L 1967 Brit. J. Appl. Phys. 18 65

    [13]

    Wu H M, Carey G F 1992 IEEE Trans. Plasma Sci. 20 1041

    [14]

    Dalaine V, Cormier J M, Lefaucheux P 1998 J. Appl. Phys. 83 2435

    [15]

    Guo Z Y, Zhao W H 1986 Electric Arc and Thermal Plasma (Beijing: Science Press) P23 (in Chinese) [过增元、 赵文华 1986 电弧与热等离子体 (北京: 科学出版社) 第13页]

    [16]

    Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209

    [17]

    Colombo V, Ghedini E, Sanibondi P 2008 Progress in Nuclear Energy 50 921

    [18]

    Chen X 1993 Heat Transfer and Flow of High-temperature Ionized Gas (Beijing: Science Press) P73 (in Chinese) [陈 熙 1993 高温电离气体传热与流动 (北京: 科学出版社) 第329页]

    [19]

    Li H, Su T, OU Y L, Wang H H, Bai X Y, Chen Z P, Liu W D 2006 Acta Phys. Sin. 55 3506 (in Chinese) [李 弘、 苏 铁、 欧阳亮、 王慧慧、 白小燕、 陈志鹏、 刘万东 2006 物理学报 55 3506]

    [20]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Y Y 2008 Acta Phys. Sin. 57 6465 (in Chinese) [孙 恺、 辛 煜、 黄晓江、 袁强华、 宁兆元 2008 物理学报 57 6465]

  • [1]

    Qiu L, Meng Y D, Ren Y X, Zhong S F 2006 Acta Phys. Sin. 55 5872 (in Chinese) [裘 亮、 孟月东、 任兆杏、 钟少锋 2006 物理学报 55 5872]

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、 黄 骏、 刘筱娣、 彭 磊、 孙 岳、 陈 维、 冯克成、 杨思泽 2009 物理学报 58 1595]

    [3]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧、 阳 林、 涂恩来、 陈建阳、 朱展文、 王晓蕾 2010物理学报 59 2610]

    [4]

    Liu L Y, Zhang J L, Guo Q C, Wang D Z 2010 Acta Phys. Sin. 59 2653 (in Chinese) [刘莉莹、 张家良、 郭卿超、 王德真 2010 物理学报 59 2653]

    [5]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [6]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [7]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [8]

    Kuznetsova I, Kalashnikov N, Gutsol A, Fridman A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [9]

    Pellerin S, Richard F, Chapelle J, Cormier J M, Musiol K 2000 J. Phys. D: Appl. Phys. 33 2407

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Phillips R L 1967 Brit. J. Appl. Phys. 18 65

    [13]

    Wu H M, Carey G F 1992 IEEE Trans. Plasma Sci. 20 1041

    [14]

    Dalaine V, Cormier J M, Lefaucheux P 1998 J. Appl. Phys. 83 2435

    [15]

    Guo Z Y, Zhao W H 1986 Electric Arc and Thermal Plasma (Beijing: Science Press) P23 (in Chinese) [过增元、 赵文华 1986 电弧与热等离子体 (北京: 科学出版社) 第13页]

    [16]

    Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209

    [17]

    Colombo V, Ghedini E, Sanibondi P 2008 Progress in Nuclear Energy 50 921

    [18]

    Chen X 1993 Heat Transfer and Flow of High-temperature Ionized Gas (Beijing: Science Press) P73 (in Chinese) [陈 熙 1993 高温电离气体传热与流动 (北京: 科学出版社) 第329页]

    [19]

    Li H, Su T, OU Y L, Wang H H, Bai X Y, Chen Z P, Liu W D 2006 Acta Phys. Sin. 55 3506 (in Chinese) [李 弘、 苏 铁、 欧阳亮、 王慧慧、 白小燕、 陈志鹏、 刘万东 2006 物理学报 55 3506]

    [20]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Y Y 2008 Acta Phys. Sin. 57 6465 (in Chinese) [孙 恺、 辛 煜、 黄晓江、 袁强华、 宁兆元 2008 物理学报 57 6465]

  • [1] Wang Xiu-Feng, Li Xin-Bei, Zhang Fang-Hui. Electric field distribution in surface-conduction electron-emitter display. Acta Physica Sinica, 2006, 55(11): 6141-6146. doi: 10.7498/aps.55.6141
    [2] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai, Lei Ming-Kai. Numerical study on the evolution of temperature of double-layer target irradiated by high power ion beam. Acta Physica Sinica, 2010, 59(7): 4826-4830. doi: 10.7498/aps.59.4826
    [3] Ni Ming-Jiang, Yu Liang, Li Xiao-Dong, Wang Yu, Yan Jian-Hua, Tu Xin. Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [4] Li Bin-Cheng, Liu Ming-Qiang. Analysis of temperature and deformation fields in an optical coating sample. Acta Physica Sinica, 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [5] Yan Jian-Hua, Wang Fei, Huang Qun-Xing, Chi Yong, Cen Ke-Fa, Liu Dong. Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Physica Sinica, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [6] Feng Ai-Xia, Wang Qi-Guang, Huang Yan, Gong Zhi-Qiang. Spatiotemporal analysis of information entropy of the global temperature. Acta Physica Sinica, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [7] Zhang Cong, Han Qi-Gang, Ma Hong-An, Xiao Hong-Yu, Li Rui, Li Zhan-Chang, Tian Yu, Jia Xiao-Peng. Finite element method study on the temperature distribution in the cell of large single crystal diamond. Acta Physica Sinica, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [8] Huang Jin-Zhe, Wang Hong, Chang Yan-Qin, Shen Tao, Andreev Y. M., Shaiduko A. V.. Simulation of the temperature-beam coupling in frequency doubling of BBO crystals. Acta Physica Sinica, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [9] Wang Qi-Guang, Xiong Kai-Guo, Gong Zhi-Qiang, Zhi Rong. Influence of time delay on global temperature correlation. Acta Physica Sinica, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [10] Gong Zhi-Qiang, Zhi Rong, Zheng Zhi-Hai, Zhou Lei. Scale analysis of global temperature based on correlation matrix theory. Acta Physica Sinica, 2009, 58(3): 2113-2120. doi: 10.7498/aps.58.2113
  • Citation:
Metrics
  • Abstract views:  3896
  • PDF Downloads:  1037
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2010
  • Accepted Date:  12 May 2010
  • Published Online:  15 March 2011

Numerical simulation study on characteristics of gliding arc discharge

  • 1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

Abstract: The arc temperature field, electric field and size of conducting zone of gliding arc plasma are important parameters to determine the temperature and density of the electrons, the chemical reaction rates and energy efficiency. Electrical parameters of a 50 Hz ac gliding arc discharge were measured under conditions of two gas flow rates, 1.43 L/min and 6.42 L/min. An instantaneous model which was used to describe the energy transfer of gliding arc discharge was simplified by using an approximate expression for the electrical conductivity and diffusivity of plasma, which ravelled out the moving boundary in the gliding arc simulation resulting from variation of arc structure. The current density, electric field, dynamic temperature field and the structure of ac gliding arc was calculated. The electric field strength from the simulation result of the model was in agreement with the experimental data. According to the calculational result, the temperature on the axis of arc reached as high as 5700—6700 K. It showed the gas flow directly affected the arc structure and current density, thus further affected the electric field strength and temperature distribution. The electric field strength increased firstly and then decreased during a discharge period.

Reference (20)

Catalog

    /

    返回文章
    返回