搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压直流滑动弧等离子体工作特性研究

屠昕 倪明江 余量 李晓东 汪宇 严建华

大气压直流滑动弧等离子体工作特性研究

屠昕, 倪明江, 余量, 李晓东, 汪宇, 严建华
PDF
导出引用
导出核心图
  • 对大气压直流滑动弧等离子体的电参数和发射光谱进行了测量,比较研究了不同气体种类下滑动弧等离子体电压的特性.以氮气滑动弧为例,分析了其在一个周期内电弧电压、电流、电阻和功率的变化特性.通过对电弧电压信号进行快速傅里叶变换频谱分析,研究了气体种类、气体流量和外部电阻值对滑动弧等离子体脉动特性的影响.结果表明随着气流量或外部电阻值的增加,其主要脉动频率变高,电弧周期变小.利用光谱法检测了氮气、氧气和空气滑动弧等离子体的主要自由基种类,并研究了外部电阻值对发射光谱强度的影响和沿电极中轴线在337.1 nm(N
    • 基金项目: 国家自然科学基金(批准号50976099)资助的课题.
    [1]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D-Appl. Phys. 38 R1

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 1595]

    [3]

    Zhang Y C, Zhu H Y, Wu H Y, Qiu Y P 2009 Acta Phys. Sin. 58 S298 (in Chinese) [张迎晨、朱海燕、吴红艳、邱夷平 2009 物理学报 58 S298]

    [4]

    Sun J, Zhang J L, Wang D Z, Ma T C 2006 Acta Phys. Sin. 55 344 (in Chinese) [孙 姣、张家良、王德真、马腾才 2006 物理学报 55 344]

    [5]

    Liu Y H, Zhang J L, Wang W G, Jian L, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 1458 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 54 1458]

    [6]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [7]

    Czernichowski A 1994 Pure Appl. Chem. 66 1301

    [8]

    Benstaali B, Moussa D, Addou A, Brisset J L 1998 Eur. Phys. J.-Appl. Phys. 4 171

    [9]

    Krawczyk K 2006 Przem. Chem. 85 1035

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [13]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [14]

    Tu X, Yu L, Yan J H, Cen K F, Cheron B G 2009 Phys. Plasmas 16 113506

    [15]

    Yan J H, Bo Z, Li X D, Du C M, Cen K F, Cheron B G 2007 Plasma Chem. Plasma Process. 27 115

    [16]

    Kuznetsova I V, Kalashnikov N Y, Gutsol A F, Fridman A A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [17]

    Delair L, Brisset J L, Cheron B G 2001 High Temp. Mater. Process 5 381

    [18]

    Bo Z, Yan J H, Li X D, Chi Y, Cen K F 2008 J. Hazard. Mater. 155 494

  • [1]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D-Appl. Phys. 38 R1

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 1595]

    [3]

    Zhang Y C, Zhu H Y, Wu H Y, Qiu Y P 2009 Acta Phys. Sin. 58 S298 (in Chinese) [张迎晨、朱海燕、吴红艳、邱夷平 2009 物理学报 58 S298]

    [4]

    Sun J, Zhang J L, Wang D Z, Ma T C 2006 Acta Phys. Sin. 55 344 (in Chinese) [孙 姣、张家良、王德真、马腾才 2006 物理学报 55 344]

    [5]

    Liu Y H, Zhang J L, Wang W G, Jian L, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 1458 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 54 1458]

    [6]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [7]

    Czernichowski A 1994 Pure Appl. Chem. 66 1301

    [8]

    Benstaali B, Moussa D, Addou A, Brisset J L 1998 Eur. Phys. J.-Appl. Phys. 4 171

    [9]

    Krawczyk K 2006 Przem. Chem. 85 1035

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [13]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [14]

    Tu X, Yu L, Yan J H, Cen K F, Cheron B G 2009 Phys. Plasmas 16 113506

    [15]

    Yan J H, Bo Z, Li X D, Du C M, Cen K F, Cheron B G 2007 Plasma Chem. Plasma Process. 27 115

    [16]

    Kuznetsova I V, Kalashnikov N Y, Gutsol A F, Fridman A A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [17]

    Delair L, Brisset J L, Cheron B G 2001 High Temp. Mater. Process 5 381

    [18]

    Bo Z, Yan J H, Li X D, Chi Y, Cen K F 2008 J. Hazard. Mater. 155 494

  • [1] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [2] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [3] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [4] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [5] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [7] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [8] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [9] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [10] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [11] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [12] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [13] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [14] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [15] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [16] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3856
  • PDF下载量:  1823
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-01
  • 修回日期:  2010-03-24
  • 刊出日期:  2011-01-15

大气压直流滑动弧等离子体工作特性研究

  • 1. (1)The University of Manchester,Manchester,M13 9PL,UK; (2)浙江大学能源清洁利用国家重点实验室,杭州 310027
    基金项目: 

    国家自然科学基金(批准号50976099)资助的课题.

摘要: 对大气压直流滑动弧等离子体的电参数和发射光谱进行了测量,比较研究了不同气体种类下滑动弧等离子体电压的特性.以氮气滑动弧为例,分析了其在一个周期内电弧电压、电流、电阻和功率的变化特性.通过对电弧电压信号进行快速傅里叶变换频谱分析,研究了气体种类、气体流量和外部电阻值对滑动弧等离子体脉动特性的影响.结果表明随着气流量或外部电阻值的增加,其主要脉动频率变高,电弧周期变小.利用光谱法检测了氮气、氧气和空气滑动弧等离子体的主要自由基种类,并研究了外部电阻值对发射光谱强度的影响和沿电极中轴线在337.1 nm(N

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回