Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and electrical properties of dual doped CaMnO3 based ceramics

Wang Hong-Chao Wang Chun-Lei Su Wen-Bin Liu Jian Sun Yi Peng Hua Zhang Jia-Liang Zhao Ming-Lei Li Ji-Chao Yin Na Mei Liang-Mo

Synthesis and electrical properties of dual doped CaMnO3 based ceramics

Wang Hong-Chao, Wang Chun-Lei, Su Wen-Bin, Liu Jian, Sun Yi, Peng Hua, Zhang Jia-Liang, Zhao Ming-Lei, Li Ji-Chao, Yin Na, Mei Liang-Mo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

Metrics
  • Abstract views:  2039
  • PDF Downloads:  803
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2010
  • Accepted Date:  31 March 2011
  • Published Online:  05 April 2011

Synthesis and electrical properties of dual doped CaMnO3 based ceramics

  • 1. State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
  • 2. Department of Physics, Changji University, Changji 831100, China

Abstract: Different Nb doped Ca0.9Yb0.1Mn1-xNbxO3 ceramics are successfully synthesized by the conventional solid state reaction technique. The crystal structures are of orthorhombic phase, belonging to the Pnma space group. The lattice constant and the volume increase with the increase of Nb content. Relatively high density is around 97%. Scanning electron microscope (SEM) images show that samples are well crystallized. The electrical resistivity and the Seebeck coefficient are measured in a temperature range between 300 and 1100 K. At low temperatures, the electrical resistivity shows a semiconductive-like behavior. At high temperatures, the electrical resistivity exhibits a typical metallic conductive behavior. The semiconductor-metal transition temperature shifts toward a higher temperature with the increase of Nb content. The electrical resistivity increases with Nb dopant, except that the electrical resistivity for x=0.03 is slight lower than that fox x=0.00 sample at high temperature range. This conductivity behavior can be understood as the fact that though Nb doping can introduce more carriers, it also distorts the MnO6 octahedra, and causes the carrier localization. The values of Seebeck coefficient are all negative, indicative of an n-type electrical conduction. The absolute value of Seebeck coefficient increases with temperature increasing, but decreases with the increase of Nb content. The highest power factor is obtained to be 297 W/K2m at 497 K in the x=0.00 sample, and the power factor of this sample is less independent of temperature in the whole measured temperature range.

Reference (29)

Catalog

    /

    返回文章
    返回