Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the deposition of aluminum-doped zinc oxide films using direct-current pulse magnetron reactive sputtering technique

Chen Chao Ji Yong Gao Xiao-Yong Zhao Meng-Ke Ma Jiao-Min Zhang Zeng-Yuan Lu Jing-Xiao

Study on the deposition of aluminum-doped zinc oxide films using direct-current pulse magnetron reactive sputtering technique

Chen Chao, Ji Yong, Gao Xiao-Yong, Zhao Meng-Ke, Ma Jiao-Min, Zhang Zeng-Yuan, Lu Jing-Xiao
PDF
Get Citation
  • Aluminum-doped zinc oxide (AZO) films have potential applications in photoconducting and piezo-electric devices, and gas and piezo sensors. Although the film structure and optical properties are intensively studied, the effect of gas flow ratio of O2 to Ar (GFR) on the film structure and optical properties has not been reported in terms of macrostress and lattice strain. In this paper, a series of AZO films is deposited on glass substrates by direct-current pulse magnetron reactive sputtering under different GFRs. The influence of the GFR on the crystalline structure, the surface topography, and the optical properties of the film is systematically studied in terms of macrostress and lattice strain by using X-ray diffractometry, scanning electron microscopy and spectrophotometry, respectively. The as-deposited AZO films are polycrystalline and (103) oriented, which can be attributed to the change in crystalline face energy during the accompanied thermal annealing for 3 h. The film tensile stress first increases to a maximum value, and then decreases gradually with GFR values increasing. It is noted that the transition from tensile to compressive stress occurs with GFR increasing. This result is different form that of lattice strain. The film transmissivity in the visible region first decreases and then increases with GFR increasing, which is attributed mainly to the scattering of grain boundary induced by the grain size.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee, China (Grant No. 2010A140017), Henan Province College Young Teachers Program of China, and the Graduate Innovation Foundation of Zhengzhou University, China (Grant No. 11L10102).
    [1]

    Robert F 1997 Science 276 890

    [2]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [3]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigh J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [4]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [5]

    Granqvist C G 1990 Thin Solid Films 730 193

    [6]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003Thin Solid Films 442 80

    [7]

    Zhang D H, Brod D E 1995 Acta Phys. Sin. 44 1321 (in Chinese) [张德恒, Brod D E 1995 物理学报 44 1321]

    [8]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [9]

    Major C, Nemeth A, Radnoczi G, Czigany Z, Fried M, Labadi Z, Barsony I 2009 Appl. Surf. Sci. 255 8907

    [10]

    Hong R J, Jiang X 2006 Appl. Phys. A 84 161

    [11]

    Deng Z H, Huang C G, Huang J Q, Wang M L, He H, Wang H, Cao Y G 2010 J. Mater. Sci.- Mater. Electron. 21 1030

    [12]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin SolidFilms 517 4684

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf . Sci. 253 4886

    [14]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chin. J. Semicond.21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [15]

    Kim H, Piqueb A, Horwitzb J S, Murata H, Kafafi Z H, GilmoreC M, Chrisey D B 2000 Thin Solid Films 377-378 798

    [16]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniquesfor Thin Films (Boston: Academic Press) p143

    [17]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [18]

    Mi X C, Chen Y Y, Wu Z J, Liu X H, Yang S Y, Zhang L C 2004PARTA: Physical Testing 40 181 (in Chinese) [宓小川, 陈英颖, 吴则嘉, 刘晓晗, 杨晟远, 张林春 2004 理化检验-物理分册 40 179]

    [19]

    Gao X Y, Liu XW, Feng H L, Lu J X 2010 J. Zhengzhou Univ. (Nat.Sci. Ed.) 42 51(in Chinese) [郜小勇, 刘绪伟, 冯红亮, 卢景霄 2010 郑州大学学报(理学版) 42 51]

    [20]

    Yim K, Kim H, Lee C 2006 J. Electroceram. 17 875

  • [1]

    Robert F 1997 Science 276 890

    [2]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [3]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigh J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [4]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [5]

    Granqvist C G 1990 Thin Solid Films 730 193

    [6]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003Thin Solid Films 442 80

    [7]

    Zhang D H, Brod D E 1995 Acta Phys. Sin. 44 1321 (in Chinese) [张德恒, Brod D E 1995 物理学报 44 1321]

    [8]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [9]

    Major C, Nemeth A, Radnoczi G, Czigany Z, Fried M, Labadi Z, Barsony I 2009 Appl. Surf. Sci. 255 8907

    [10]

    Hong R J, Jiang X 2006 Appl. Phys. A 84 161

    [11]

    Deng Z H, Huang C G, Huang J Q, Wang M L, He H, Wang H, Cao Y G 2010 J. Mater. Sci.- Mater. Electron. 21 1030

    [12]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin SolidFilms 517 4684

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf . Sci. 253 4886

    [14]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chin. J. Semicond.21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [15]

    Kim H, Piqueb A, Horwitzb J S, Murata H, Kafafi Z H, GilmoreC M, Chrisey D B 2000 Thin Solid Films 377-378 798

    [16]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniquesfor Thin Films (Boston: Academic Press) p143

    [17]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [18]

    Mi X C, Chen Y Y, Wu Z J, Liu X H, Yang S Y, Zhang L C 2004PARTA: Physical Testing 40 181 (in Chinese) [宓小川, 陈英颖, 吴则嘉, 刘晓晗, 杨晟远, 张林春 2004 理化检验-物理分册 40 179]

    [19]

    Gao X Y, Liu XW, Feng H L, Lu J X 2010 J. Zhengzhou Univ. (Nat.Sci. Ed.) 42 51(in Chinese) [郜小勇, 刘绪伟, 冯红亮, 卢景霄 2010 郑州大学学报(理学版) 42 51]

    [20]

    Yim K, Kim H, Lee C 2006 J. Electroceram. 17 875

  • [1] Zhang Zeng-Yuan, Gao Xiao-Yong, Feng Hong-Liang, Ma Jiao-Min, Lu Jing-Xiao. Effect of the reactive pressure on the structure and optical properties of silver oxide films deposited by direct-current reactive magnetron sputtering. Acta Physica Sinica, 2011, 60(1): 016110. doi: 10.7498/aps.60.016110
    [2] Du Cheng-Xu, Wang Ting, Du Ying-Yan, Jia Qian, Cui Yu-Ting, Hu Ai-Yuan, Xiong Yuan-Qiang, Wu Zhi-Min. Photoelectric properties of Ag and Cr co-doped LiZnP new diluted magnetic semiconductors. Acta Physica Sinica, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [3] Ma Jiao-Min, Liang Yan, Gao Xiao-Yong, Chen Chao, Zhao Meng-Ke, Lu Jing-Xiao. Spectroscopic ellipsometry study of the Ag2O film deposited by radio-frequency reactive magnetron sputtering. Acta Physica Sinica, 2012, 61(5): 056106. doi: 10.7498/aps.61.056106
    [4] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [5] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [6] Li De-Hua, Cheng Xin-Lu, Yang Ze-Jin, Liu Qiang. Effect of Al and N codoping on the optical properties of Zn1-xMgxO. Acta Physica Sinica, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [7] Liu Jian-Jun. The effect on electronic density of states and optical properties of ZnO by doping Ga. Acta Physica Sinica, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [8] Li Jian-Hua, Zeng Xiang-Hua, Ji Zheng-Hua, Hu Yi-Pei, Chen Bao, Fan Yu-Pei. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Physica Sinica, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [9] Niu Zhong-Cai, He Zhi-Bing, Zhang Ying, Wei Jian-Jun, Liao Guo, Du Kai, Tang Yong-Jian. Influence of radio frequency power on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2012, 61(10): 106804. doi: 10.7498/aps.61.106804
    [10] Yang Xue-Lin, Zhang Guo-Yi, Fan Guang-Han, Xing Hai-Ying. Optical properties of GaMnN films grown by metal-organic chemical vapor deposition. Acta Physica Sinica, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
  • Citation:
Metrics
  • Abstract views:  1476
  • PDF Downloads:  498
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2011
  • Accepted Date:  01 June 2011
  • Published Online:  15 March 2012

Study on the deposition of aluminum-doped zinc oxide films using direct-current pulse magnetron reactive sputtering technique

  • 1. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee, China (Grant No. 2010A140017), Henan Province College Young Teachers Program of China, and the Graduate Innovation Foundation of Zhengzhou University, China (Grant No. 11L10102).

Abstract: Aluminum-doped zinc oxide (AZO) films have potential applications in photoconducting and piezo-electric devices, and gas and piezo sensors. Although the film structure and optical properties are intensively studied, the effect of gas flow ratio of O2 to Ar (GFR) on the film structure and optical properties has not been reported in terms of macrostress and lattice strain. In this paper, a series of AZO films is deposited on glass substrates by direct-current pulse magnetron reactive sputtering under different GFRs. The influence of the GFR on the crystalline structure, the surface topography, and the optical properties of the film is systematically studied in terms of macrostress and lattice strain by using X-ray diffractometry, scanning electron microscopy and spectrophotometry, respectively. The as-deposited AZO films are polycrystalline and (103) oriented, which can be attributed to the change in crystalline face energy during the accompanied thermal annealing for 3 h. The film tensile stress first increases to a maximum value, and then decreases gradually with GFR values increasing. It is noted that the transition from tensile to compressive stress occurs with GFR increasing. This result is different form that of lattice strain. The film transmissivity in the visible region first decreases and then increases with GFR increasing, which is attributed mainly to the scattering of grain boundary induced by the grain size.

Reference (20)

Catalog

    /

    返回文章
    返回