Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics

Yang Ping Wang Xiao-Liang Li Pei Wang Huang Zhang Li-Qiang Xie Fang-Wei

The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics

Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei
PDF
Get Citation
  • Graphene has become one of the most exciting topics of nano-material research in recent years because of its unique thermal properties. Nitrogen doping and vacancy defects are utilized to modify the characteristics of graphene in order to understand and control the heat transfer process of graphene. We use nonequilibrium molecular dynamics to calculate the thermal conductivity of armchair graphenenanoribbon affected by nitrogen doping concentration and nitrogen doping location, and analyze theoretically the cause of the change of thermal conductivity. The research shows that the thermal conductivity drops sharply when graphenenanoribbon is doped by nitrogen. When nitrogen doping concentration is up to 30%, the thermal conductivity drops by 75.8%. When the location of nitrogen doping moves from the cold bath to the thermal bath, the thermal conductivity first decreases and then increases. And it is also found that the structure of triangular single-nitrogen-doped graphenenanoribbon is inhibited more strongly in the heat transfer process than that of parallel various-nitrogen-doped graphenenanoribbon. Vacancy defects reduce the thermal conductivity of graphenenanoribbon. When the location of vacancy moves from the cold bath to thermal bath, the thermal conductivity first decreases and then increases. When the vacancy position is located at 3/10 of the entire length relative to the edge of the cold bath, the thermal conductivity reaches a minimum value. This is because of the phonon velocity and phonon mean free path varying with the concentration and the location of nitrogen doping and the location of vacancy defect. These results are useful to control the heat transfer process of nanoscalegraphene and provide theoretical support for the synthesis of new materials.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076098, 50875115), the Natural Science Foundation of Jiangsu Province of China (Grant No. 2008227), and the Graduate Innovative Project of Jiangsu Province (Grant No. CX10B 252Z).
    [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [2] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [3] Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin. Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy. Acta Physica Sinica, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [4] He Hui-Fang, Chen Zhi-Quan. Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Physica Sinica, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [5] Yuan Jian-Hui, Zhang Zhen-Hua, Cheng Yu-Min. Effects of vacancy structural defects on the elastic properties of carbon nanotubes. Acta Physica Sinica, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [6] Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng, Wang Zhi-Yong. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [7] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [8] Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang. Electrical and magnetic properties of graphene nanoribbons with BN-chain doping. Acta Physica Sinica, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [9] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [10] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
  • Citation:
Metrics
  • Abstract views:  2818
  • PDF Downloads:  1322
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2011
  • Accepted Date:  05 April 2012
  • Published Online:  05 April 2012

The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics

  • 1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61076098, 50875115), the Natural Science Foundation of Jiangsu Province of China (Grant No. 2008227), and the Graduate Innovative Project of Jiangsu Province (Grant No. CX10B 252Z).

Abstract: Graphene has become one of the most exciting topics of nano-material research in recent years because of its unique thermal properties. Nitrogen doping and vacancy defects are utilized to modify the characteristics of graphene in order to understand and control the heat transfer process of graphene. We use nonequilibrium molecular dynamics to calculate the thermal conductivity of armchair graphenenanoribbon affected by nitrogen doping concentration and nitrogen doping location, and analyze theoretically the cause of the change of thermal conductivity. The research shows that the thermal conductivity drops sharply when graphenenanoribbon is doped by nitrogen. When nitrogen doping concentration is up to 30%, the thermal conductivity drops by 75.8%. When the location of nitrogen doping moves from the cold bath to the thermal bath, the thermal conductivity first decreases and then increases. And it is also found that the structure of triangular single-nitrogen-doped graphenenanoribbon is inhibited more strongly in the heat transfer process than that of parallel various-nitrogen-doped graphenenanoribbon. Vacancy defects reduce the thermal conductivity of graphenenanoribbon. When the location of vacancy moves from the cold bath to thermal bath, the thermal conductivity first decreases and then increases. When the vacancy position is located at 3/10 of the entire length relative to the edge of the cold bath, the thermal conductivity reaches a minimum value. This is because of the phonon velocity and phonon mean free path varying with the concentration and the location of nitrogen doping and the location of vacancy defect. These results are useful to control the heat transfer process of nanoscalegraphene and provide theoretical support for the synthesis of new materials.

Reference (55)

Catalog

    /

    返回文章
    返回