Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer

Chen Shu-Fen Shao Ming Guo Xu Qian Yan Shi Nai-En Xie Ling-Hai Yang Yang Huang Wei

Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer

Chen Shu-Fen, Shao Ming, Guo Xu, Qian Yan, Shi Nai-En, Xie Ling-Hai, Yang Yang, Huang Wei
PDF
Get Citation
  • Top-emitting white organic light-emitting diode (TEWOLED) has potential applications in lighting and full color displays. Microcavity effect in TEWOLED restrains the realization of the white emission with excellent optical and electric performances. In this paper, a ZnS film with a high refractive index used as a light outcoupling layer is introduced into the metal cathode to enhance its transmittivity to a maximal value in the blue light wavelength region. In addition, transfer matrix theory is utilized to optimize the thicknesses of the cathode and the ZnS outcoupling layer and the wide-angle interference is used to design the position of the blue emission layer inside the organic light-emitting diode. Based on the above work, the white light with relatively high luminous efficiency, good color purity, and small CIE coordinate change is acquired. The corresponding luminance and current efficicency are 9213 cd/m2 and 3 cd/A, respectively. The CIE coordinates belong to the white emission and are near the white light equal-energy point. The white emission also shows stable spectra with respect to the observation angle, with a limited CIE coordinate change of (0.02, 0) for a large observation angle change from 0 to 60.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600), the National Natural Science Foundation of China (Grant Nos. 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20093223120003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009423), the Natural Science Foundation of Institution of Higher Education of Jiangsu Province, China (Grant Nos. SJ209003, 09KJB150009, 10KJB510013, TJ209035), the Qing Lan Program of Jiangsu Province, China, and the Climbing Program of Nanjing University of Posts and Telecommunications, China (Grant No. NY210015).
    [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

  • [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

  • [1] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [2] Cao Jin, Liu Xiang, Zhang Xiao-Bo, Wei Fu-Xiang, Zhu Wen-Qing, Jiang Xue-Yin, Zhang Zhi-Lin, Xu Shao-Hong. Top-emitting organic light-emitting devices with cavity effect. Acta Physica Sinica, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [3] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [4] Shang Shu-Zhen, Shao Jian-Da, Fan Zheng-Xiu. Low-loss 193nm anti_reflection coatings. Acta Physica Sinica, 2008, 57(3): 1946-1950. doi: 10.7498/aps.57.1946
    [5] Cao Jin, Jiang Xue-Yin, Zhang Zhi-Lin. Research of tricolor microcavity top-emitting organic light-emitting devices with white emitting layer. Acta Physica Sinica, 2007, 56(6): 3493-3498. doi: 10.7498/aps.56.3493
    [6] Wang Ning, Zhu Yong, Wei Wei, Chen Jian-Jun, Li Ping, Wen Yu-Mei. Characteristics of the photovoltaic device with nanohole array antireflection coating layer. Acta Physica Sinica, 2012, 61(3): 038801. doi: 10.7498/aps.61.038801
    [7] Qian Ke-Yuan, Ma Jun, Fu Wei, Luo Yi. Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory. Acta Physica Sinica, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [8] Li Chun, Peng Jun-Biao, Zeng Wen-Jin. Organic red light-emitting diodes with a soluble luminescent compound and a novel TPBI/Ag cathode. Acta Physica Sinica, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [9] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [10] Peng Jing-Cui, Li Hong-Jian, Qu Shu, Zhao Chu-Jun, Luo Xiao-Hua, Xu Xue-Mei. Effects of organic/organic interface on recombination efficiency in double-layer organic diodes. Acta Physica Sinica, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [11] Liu Hao-Jie, Lan Tian, Ni Guo-Qiang. Research on the light emitting diode array launching performance for indoor visible light communication. Acta Physica Sinica, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
  • Citation:
Metrics
  • Abstract views:  2318
  • PDF Downloads:  1021
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2011
  • Accepted Date:  28 April 2012
  • Published Online:  20 April 2012

Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer

  • 1. Key Laboratory for Organic Electronics and Information Displays of Jiangsu Province, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600), the National Natural Science Foundation of China (Grant Nos. 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20093223120003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009423), the Natural Science Foundation of Institution of Higher Education of Jiangsu Province, China (Grant Nos. SJ209003, 09KJB150009, 10KJB510013, TJ209035), the Qing Lan Program of Jiangsu Province, China, and the Climbing Program of Nanjing University of Posts and Telecommunications, China (Grant No. NY210015).

Abstract: Top-emitting white organic light-emitting diode (TEWOLED) has potential applications in lighting and full color displays. Microcavity effect in TEWOLED restrains the realization of the white emission with excellent optical and electric performances. In this paper, a ZnS film with a high refractive index used as a light outcoupling layer is introduced into the metal cathode to enhance its transmittivity to a maximal value in the blue light wavelength region. In addition, transfer matrix theory is utilized to optimize the thicknesses of the cathode and the ZnS outcoupling layer and the wide-angle interference is used to design the position of the blue emission layer inside the organic light-emitting diode. Based on the above work, the white light with relatively high luminous efficiency, good color purity, and small CIE coordinate change is acquired. The corresponding luminance and current efficicency are 9213 cd/m2 and 3 cd/A, respectively. The CIE coordinates belong to the white emission and are near the white light equal-energy point. The white emission also shows stable spectra with respect to the observation angle, with a limited CIE coordinate change of (0.02, 0) for a large observation angle change from 0 to 60.

Reference (30)

Catalog

    /

    返回文章
    返回