Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The spall strength and shock compressive damage of AD95 ceramics

Sun Zhan-Feng He Hong-Liang Li Ping Li Qing-Zhong

The spall strength and shock compressive damage of AD95 ceramics

Sun Zhan-Feng, He Hong-Liang, Li Ping, Li Qing-Zhong
PDF
Get Citation
  • The relationship between spall strength and impact stress of AD95 ceramics which is in a one-dimensional strain state is determined by velocity profile measurement of the free surface or the sample/window interface. All fiber displacement interferometer system for any reflector is used in velocity measurement. Further the relationship between shock compressive damage degree and impact stress is discussed. The results indicate that the stress threshold of AD95 ceramics against shock compressive damage is about 3.7 GPa, which is less than its Hugoniot Elastic Limit (HEL, about 5.47 GPa). When impact stress is less than the threshold, no compressive damage occurs, and the spall strength increases with impact stress gradually. When impact stress is greater than the threshold, shock compressive damage occurs and develops rapidly which leads to the decrease of the spall strength with impact stress. The spall strength falls to zero when the impact stress increases up to about the HEL, which indicates that the material has lost the ability to resist the tensile stress and severe shock compressive damage has happened.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.10632080).
    [1]

    Grady D E 1998 Mechanics of Materials 29 181

    [2]

    Brace W F, Paulding Jr B W, Scholz C 1966 J. Geophys. Res. 71 3939

    [3]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Int. J. Impact Engng. 27 509

    [4]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Shock Compression of Condensed Matter (edited by Furnish M D, Thadhani N N et al AIP, Georgia, 2001) p739

    [5]

    Bar-on E 2007Shock Compression of Condensed Matter(edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) p223

    [6]

    Bourne N K, Millett J, Rosenberg Z 1998 J. Mech. Phys. Solids 46 1887

    [7]

    Liu Z F, Chang J Z, Yao G W 2006 Applied Mathematics and Mechanics 38 626 (in Chinese)[刘占芳, 常敬臻, 姚国文2006力学学报38 626]

    [8]

    Chen D P, He H L, Li M F, Jing F Q 2007 Acta Phys. Sin. 56 423 (in Chinese)[陈登平, 贺红亮, 黎明发, 经福谦2007物理学报56 423]

    [9]

    Grady D E, Moody R L 1996 Sandia Report SAND96-0551, UC- 704

    [10]

    Rosenberg Z 1991 Shock Compression of Condensed Matter (edited by Schmidt S C, Dick R D et al Elsevier Science, NewYork, 1991) 439

    [11]

    Bourne N K, Millett J, Chen M W 2007Shock Compression of Condensed Matter (edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) 739

    [12]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nature Materials 5 614

    [13]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965(in Chinese)[祁美兰, 贺红亮, 晏石林2007物理学报56 5965]

    [14]

    Cagnoux J, Longy F 1988 J. Phys. 40 3

    [15]

    Dandekar D P, Bartkowski P 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 733

    [16]

    Bourne N K 2001 Proc. R. Soc. A 457 2189

    [17]

    Longy F, Cagnoux J 1989 J. Am. Ceram. Soc. 72 971

    [18]

    Staehler J M, Predebon W W, Pletka B J 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 745

    [19]

    Gust W H, Holt A C, Royce E B 1973 J. Appl. Phys. 44 550

    [20]

    Bless S J, Yaziv D, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 419

    [21]

    Murray N H, Bourne N K, Rosenberg Z, Field J E 1998 J. Appl. Phys. 84 734

    [22]

    Rosenberg Z, Yeshurun Y 1985 J. Appl. Phys. 58 3077

    [23]

    Yaziv D, Bless S J, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 425

    [24]

    Grady D E, Kipp M E 1993 High-pressure Shock Compression of Solids (edited by Asay J R, Shahinpoor M, New York: Springer- Verlag New York Inc.) 265

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p57, 166, 446

    [26]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 1 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展 25 1]

    [27]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 145 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展25 145]

  • [1]

    Grady D E 1998 Mechanics of Materials 29 181

    [2]

    Brace W F, Paulding Jr B W, Scholz C 1966 J. Geophys. Res. 71 3939

    [3]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Int. J. Impact Engng. 27 509

    [4]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Shock Compression of Condensed Matter (edited by Furnish M D, Thadhani N N et al AIP, Georgia, 2001) p739

    [5]

    Bar-on E 2007Shock Compression of Condensed Matter(edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) p223

    [6]

    Bourne N K, Millett J, Rosenberg Z 1998 J. Mech. Phys. Solids 46 1887

    [7]

    Liu Z F, Chang J Z, Yao G W 2006 Applied Mathematics and Mechanics 38 626 (in Chinese)[刘占芳, 常敬臻, 姚国文2006力学学报38 626]

    [8]

    Chen D P, He H L, Li M F, Jing F Q 2007 Acta Phys. Sin. 56 423 (in Chinese)[陈登平, 贺红亮, 黎明发, 经福谦2007物理学报56 423]

    [9]

    Grady D E, Moody R L 1996 Sandia Report SAND96-0551, UC- 704

    [10]

    Rosenberg Z 1991 Shock Compression of Condensed Matter (edited by Schmidt S C, Dick R D et al Elsevier Science, NewYork, 1991) 439

    [11]

    Bourne N K, Millett J, Chen M W 2007Shock Compression of Condensed Matter (edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) 739

    [12]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nature Materials 5 614

    [13]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965(in Chinese)[祁美兰, 贺红亮, 晏石林2007物理学报56 5965]

    [14]

    Cagnoux J, Longy F 1988 J. Phys. 40 3

    [15]

    Dandekar D P, Bartkowski P 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 733

    [16]

    Bourne N K 2001 Proc. R. Soc. A 457 2189

    [17]

    Longy F, Cagnoux J 1989 J. Am. Ceram. Soc. 72 971

    [18]

    Staehler J M, Predebon W W, Pletka B J 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 745

    [19]

    Gust W H, Holt A C, Royce E B 1973 J. Appl. Phys. 44 550

    [20]

    Bless S J, Yaziv D, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 419

    [21]

    Murray N H, Bourne N K, Rosenberg Z, Field J E 1998 J. Appl. Phys. 84 734

    [22]

    Rosenberg Z, Yeshurun Y 1985 J. Appl. Phys. 58 3077

    [23]

    Yaziv D, Bless S J, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 425

    [24]

    Grady D E, Kipp M E 1993 High-pressure Shock Compression of Solids (edited by Asay J R, Shahinpoor M, New York: Springer- Verlag New York Inc.) 265

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p57, 166, 446

    [26]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 1 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展 25 1]

    [27]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 145 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展25 145]

  • [1] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [2] Wu Jun-Bo, Tang Xin-Gui, Jia Zhen-Hua, Chen Dong-Ge, Jiang Yan-Ping, Liu Qiu-Xiang. Influences of Y- and La-dopant on the thermal conductive properties and dielectric relaxation of Al2O3-based ceramics. Acta Physica Sinica, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [3] Wang Yong-Gang, Wang Li-Li, Chen Deng-Ping, He Hong-Liang, Jing Fu-Qian. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading. Acta Physica Sinica, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [4] Li Xiao-Xi, Jia Tian-Qing, Feng Dong-Hai, Xu Zhi-Zhan. The mechanism of ablation of sapphire by an ultra-short pulse laser. Acta Physica Sinica, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
    [5] Zeng Zhi-Jiang, Yang Qiu-Hong, Xu Jun. Spectroscopic characteristics of Cr3+:Al2O3 polycrystalline transparent alumina ceramics. Acta Physica Sinica, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [6] Li Qi, Zhang Yong. Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer. Acta Physica Sinica, 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [7] Qin Jie-Ming, Zhang Ying, Cao Jian-Ming, Tian Li-Fei, Dong Zhong-Wei, Li Yue. Characterization of the transparent n-type ZnO ceramic with lowresistivity prepared under high pressure. Acta Physica Sinica, 2011, 60(3): 036105. doi: 10.7498/aps.60.036105
    [8] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [9] Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline. Acta Physica Sinica, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [10] Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing. Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics. Acta Physica Sinica, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [11] Lou Hao-Nan, Lu Fang, Wang Jun-Zhuan, Shi Zhuo-Qiong, Zhang Xin-Luan, Zuo Ze-Wen, Pu Lin, Zhang Rong, Zheng You-Liao, Shi Yi, Ma En. Influence of Si crystallization evolution on 1.54 μm luminescence in Er-doped Si/Al2O3 multilayer. Acta Physica Sinica, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [12] Wu Li-Hua, Zhang Xiao-Zhong, Yu Yi, Wan Cai-Hua, Tan Xin-Yu. Photovoltaic effect of a-C: Fe/AlOx /Si based heterostructures. Acta Physica Sinica, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [13] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [14] Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin. Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3. Acta Physica Sinica, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [15] Feng Xiao-Wei, Li Jun-Cheng, Wang Hong-Bo, Chang Jing-Zhen. Mesomechanism of elastic precursor decay in alumina under plate impact loading. Acta Physica Sinica, 2016, 65(16): 166201. doi: 10.7498/aps.65.166201
    [16] Peng Hui, Pei Xiao-Yang, Li Ping, He Hong-Liang, Bai Jin-Song. Micro-damage characteristics of incipient spall in high-purity copper. Acta Physica Sinica, 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [17] Ba De-Chun, Liao Guo-Jin, Yan Shao-Feng. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [18] . Acta Physica Sinica, 1960, 64(7): 423-424. doi: 10.7498/aps.16.423
    [19] Wu Shan. . Acta Physica Sinica, 1995, 44(6): 1003-1008. doi: 10.7498/aps.44.1003
    [20] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
  • Citation:
Metrics
  • Abstract views:  2148
  • PDF Downloads:  937
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2011
  • Accepted Date:  10 May 2012
  • Published Online:  05 May 2012

The spall strength and shock compressive damage of AD95 ceramics

  • 1. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China
Fund Project:  Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.10632080).

Abstract: The relationship between spall strength and impact stress of AD95 ceramics which is in a one-dimensional strain state is determined by velocity profile measurement of the free surface or the sample/window interface. All fiber displacement interferometer system for any reflector is used in velocity measurement. Further the relationship between shock compressive damage degree and impact stress is discussed. The results indicate that the stress threshold of AD95 ceramics against shock compressive damage is about 3.7 GPa, which is less than its Hugoniot Elastic Limit (HEL, about 5.47 GPa). When impact stress is less than the threshold, no compressive damage occurs, and the spall strength increases with impact stress gradually. When impact stress is greater than the threshold, shock compressive damage occurs and develops rapidly which leads to the decrease of the spall strength with impact stress. The spall strength falls to zero when the impact stress increases up to about the HEL, which indicates that the material has lost the ability to resist the tensile stress and severe shock compressive damage has happened.

Reference (27)

Catalog

    /

    返回文章
    返回