Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer

Li Qi Zhang Yong

Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer

Li Qi, Zhang Yong
PDF
Get Citation
  • Inverted polymer solar cell with P3HT:PC61BM as an active layer is fabricated based on Al2O3/MoO3 composite anode buffer layer. Effects of Al2O3/MoO3 composite anode buffer layers with the Al2O3 precursor solutions of different concentrations on the device performance are investigated. It can be found that the Al2O3/MoO3 composite anode buffer layer can effectively enhance the photovoltaic performance and device stability of inverted polymer solar cell. The open-circuit voltage (Voc), short-circuit current (Jsc), filling factor (FF), and photoelectric conversion efficiency (PCE) are 0.64 V, 8.62 mA/cm2, 63.86%, and 3.85% respectively for the control device with MoO3 single buffer layer. In addition, with the increase of the concentration of Al2O3 precursor solution, the photovoltaic performance of the inverted polymer solar cell with Al2O3/MoO3 composite anode buffer layer is gradually improved. For the Al2O3 precursor solution of 0.15%, the photovoltaic performance of the device reaches an optimal value, and the corresponding Voc, Jsc, FF, and PCE are 0.65 V, 11.04 mA/cm2, 64.46%, and 4.64%, respectively. The Jsc and PCE significantly increase by 28% and 20%, respectively, compared with those of the control device with MoO3 single buffer layer. Moreover, after 80 days of measuring the device lifetime, the PCE of the device with the composite anode buffer layer remains at 76% of the original value while the PCE with the single buffer layer is reduced below 50%. The improvement of the device performance should be attributed to the PC61BM receptor near the anode dissolved and washed by isopropyl alcohol solvent from the Al2O3 precursor solution. At the same time, a large number of pits on the surface of the active layer are filled with Al2O3 to make it more smoothly contact the composite anode buffer layer. Therefore, the contact resistance between the active layer and the anode decreases, which enhances hole collection performance of the anode. Simultaneously, the Al2O3 layer can passivate the active layer of the device, thus improving the photovoltaic performance and device stability of inverted polymer solar cell.
      Corresponding author: Zhang Yong, zycq@scnu.edu.cn
    • Funds: Project supported by the Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013B040402009, 2014B090915004, 2015B010132009).
    [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Weickert J, Sun H, Palumbiny C, Hesse H C, Mende L S 2010 Sol. Energy Mater. Sol. Cells 94 2371

    [4]

    Kim K J, Kim Y S, Kang W S, Kang B H, Yeom S H, Kim D E, Kim J H, Kang S W 2010 Sol. Energy Mater. Sol. Cells 94 1303

    [5]

    Norrman K, Madsen M V, Gevorgyan S A, Krebs F C 2010 J. Am. Chem. Soc. 132 16883

    [6]

    Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley D C, Durrant J R 2006 Sol. Energy Mater. Sol. Cells 90 3520

    [7]

    Irwin M D, Buchholz D B, Hains A W, Chang R P, Marks T J 2008 Proc. Nat. Acad. Sci. USA 105 2783

    [8]

    Espinosa N, Dam H F, Tanenbaum D M, Andreasen J W, Jorgensen M, Krebs F C 2011 Materials 4 169

    [9]

    Long Y 2010 Sol. Energy Mater. Sol. Cells 94 744

    [10]

    Qin P L, Fang G J, Sun N H, Fan X, Zheng Q, Chen F, Wan J W, Zhao X Z 2011 Thin Solid Films 519 4334

    [11]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw A K K, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energy Mater. Sol. Cells. 94 985

    [12]

    Kim D Y, Subbiah J, Sarasqueta G, So F, Ding H 2009 Appl. Phys. Lett. 95 093304

    [13]

    Cheng F, Fang G J, Fan X, Liu N S, Sun N H, Qin P L, Zheng Q, Wan J W, Zhao X Z 2011 Sol. Energy Mater. Sol. Cells. 95 2914

    [14]

    Qin P L, Fang G J, Ke W J, Zheng Q, Wen J W, Lei H W, Zhao X Z 2014 J. Mater. Chem. A 2 2742

    [15]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695

    [16]

    Li Z Q, Guo W B, Liu C Y, Zhang X Y, Li S J, Guo J X, Zhang L 2017 Phys. Chem. Chem. Phys. 19 20839

    [17]

    Vitanov P, Harizanova A, Ivanova T 2009 Thin Solid Films 517 6327

    [18]

    Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z, Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385

    [19]

    Zhou L, Zhuang J Y, Tongay S, Su W M, Cui Z 2013 J. Appl. Phys. 114 074506

    [20]

    Peng J, Sun Q J, Zhai Z C, Yuan J Y, Huang X D, Jin Z M, Li K Y, Wang S D, Wang H Q, Ma W L 2013 Nanotechnology 24 484010

    [21]

    David E A, Mott N F 1970 Philos. Mag. 22 903

    [22]

    Gao L H, Wang F C, Ma Z, Liao Y B, Li D R, Shen L N 2009 Rare Metal Mat. Eng. 38 773

    [23]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [24]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [25]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 1 2107

    [26]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [27]

    Zhu G, Xu T, L T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

    [28]

    Zhu K, Neale N R, Miedaner A, Frank A J 2007 Nano Lett. 7 69

  • [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Weickert J, Sun H, Palumbiny C, Hesse H C, Mende L S 2010 Sol. Energy Mater. Sol. Cells 94 2371

    [4]

    Kim K J, Kim Y S, Kang W S, Kang B H, Yeom S H, Kim D E, Kim J H, Kang S W 2010 Sol. Energy Mater. Sol. Cells 94 1303

    [5]

    Norrman K, Madsen M V, Gevorgyan S A, Krebs F C 2010 J. Am. Chem. Soc. 132 16883

    [6]

    Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley D C, Durrant J R 2006 Sol. Energy Mater. Sol. Cells 90 3520

    [7]

    Irwin M D, Buchholz D B, Hains A W, Chang R P, Marks T J 2008 Proc. Nat. Acad. Sci. USA 105 2783

    [8]

    Espinosa N, Dam H F, Tanenbaum D M, Andreasen J W, Jorgensen M, Krebs F C 2011 Materials 4 169

    [9]

    Long Y 2010 Sol. Energy Mater. Sol. Cells 94 744

    [10]

    Qin P L, Fang G J, Sun N H, Fan X, Zheng Q, Chen F, Wan J W, Zhao X Z 2011 Thin Solid Films 519 4334

    [11]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw A K K, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energy Mater. Sol. Cells. 94 985

    [12]

    Kim D Y, Subbiah J, Sarasqueta G, So F, Ding H 2009 Appl. Phys. Lett. 95 093304

    [13]

    Cheng F, Fang G J, Fan X, Liu N S, Sun N H, Qin P L, Zheng Q, Wan J W, Zhao X Z 2011 Sol. Energy Mater. Sol. Cells. 95 2914

    [14]

    Qin P L, Fang G J, Ke W J, Zheng Q, Wen J W, Lei H W, Zhao X Z 2014 J. Mater. Chem. A 2 2742

    [15]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695

    [16]

    Li Z Q, Guo W B, Liu C Y, Zhang X Y, Li S J, Guo J X, Zhang L 2017 Phys. Chem. Chem. Phys. 19 20839

    [17]

    Vitanov P, Harizanova A, Ivanova T 2009 Thin Solid Films 517 6327

    [18]

    Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z, Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385

    [19]

    Zhou L, Zhuang J Y, Tongay S, Su W M, Cui Z 2013 J. Appl. Phys. 114 074506

    [20]

    Peng J, Sun Q J, Zhai Z C, Yuan J Y, Huang X D, Jin Z M, Li K Y, Wang S D, Wang H Q, Ma W L 2013 Nanotechnology 24 484010

    [21]

    David E A, Mott N F 1970 Philos. Mag. 22 903

    [22]

    Gao L H, Wang F C, Ma Z, Liao Y B, Li D R, Shen L N 2009 Rare Metal Mat. Eng. 38 773

    [23]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [24]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [25]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 1 2107

    [26]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [27]

    Zhu G, Xu T, L T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

    [28]

    Zhu K, Neale N R, Miedaner A, Frank A J 2007 Nano Lett. 7 69

  • [1] Li Qi, Zhang Yong. Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer. Acta Physica Sinica, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [2] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [3] Huang Wen-Bo, Zeng Wen-Jin, Wang Li, Peng Jun-Biao. Negative capacitance in polymer light-emitting diodes. Acta Physica Sinica, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [4] Li Xiao-Xi, Jia Tian-Qing, Feng Dong-Hai, Xu Zhi-Zhan. The mechanism of ablation of sapphire by an ultra-short pulse laser. Acta Physica Sinica, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
    [5] Sun Zhan-Feng, He Hong-Liang, Li Ping, Li Qing-Zhong. The spall strength and shock compressive damage of AD95 ceramics. Acta Physica Sinica, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [6] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [7] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [8] Huang Wen-Bo, Peng Jun-Biao. Carrier injection process of polymer light-emitting diodes. Acta Physica Sinica, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [9] Zeng Zhi-Jiang, Yang Qiu-Hong, Xu Jun. Spectroscopic characteristics of Cr3+:Al2O3 polycrystalline transparent alumina ceramics. Acta Physica Sinica, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [10] Lou Hao-Nan, Lu Fang, Wang Jun-Zhuan, Shi Zhuo-Qiong, Zhang Xin-Luan, Zuo Ze-Wen, Pu Lin, Zhang Rong, Zheng You-Liao, Shi Yi, Ma En. Influence of Si crystallization evolution on 1.54 μm luminescence in Er-doped Si/Al2O3 multilayer. Acta Physica Sinica, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
  • Citation:
Metrics
  • Abstract views:  212
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2017
  • Accepted Date:  29 November 2017
  • Published Online:  20 March 2018

Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer

    Corresponding author: Zhang Yong, zycq@scnu.edu.cn
  • 1. Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
  • 2. Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631, China
Fund Project:  Project supported by the Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013B040402009, 2014B090915004, 2015B010132009).

Abstract: Inverted polymer solar cell with P3HT:PC61BM as an active layer is fabricated based on Al2O3/MoO3 composite anode buffer layer. Effects of Al2O3/MoO3 composite anode buffer layers with the Al2O3 precursor solutions of different concentrations on the device performance are investigated. It can be found that the Al2O3/MoO3 composite anode buffer layer can effectively enhance the photovoltaic performance and device stability of inverted polymer solar cell. The open-circuit voltage (Voc), short-circuit current (Jsc), filling factor (FF), and photoelectric conversion efficiency (PCE) are 0.64 V, 8.62 mA/cm2, 63.86%, and 3.85% respectively for the control device with MoO3 single buffer layer. In addition, with the increase of the concentration of Al2O3 precursor solution, the photovoltaic performance of the inverted polymer solar cell with Al2O3/MoO3 composite anode buffer layer is gradually improved. For the Al2O3 precursor solution of 0.15%, the photovoltaic performance of the device reaches an optimal value, and the corresponding Voc, Jsc, FF, and PCE are 0.65 V, 11.04 mA/cm2, 64.46%, and 4.64%, respectively. The Jsc and PCE significantly increase by 28% and 20%, respectively, compared with those of the control device with MoO3 single buffer layer. Moreover, after 80 days of measuring the device lifetime, the PCE of the device with the composite anode buffer layer remains at 76% of the original value while the PCE with the single buffer layer is reduced below 50%. The improvement of the device performance should be attributed to the PC61BM receptor near the anode dissolved and washed by isopropyl alcohol solvent from the Al2O3 precursor solution. At the same time, a large number of pits on the surface of the active layer are filled with Al2O3 to make it more smoothly contact the composite anode buffer layer. Therefore, the contact resistance between the active layer and the anode decreases, which enhances hole collection performance of the anode. Simultaneously, the Al2O3 layer can passivate the active layer of the device, thus improving the photovoltaic performance and device stability of inverted polymer solar cell.

Reference (28)

Catalog

    /

    返回文章
    返回