Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The surface effect on the p-type conductivity of Li-doped ZnO film

Si Hang He Hai-Yan Pan Bi-Cai

The surface effect on the p-type conductivity of Li-doped ZnO film

Si Hang, He Hai-Yan, Pan Bi-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using the first-principles method, we study the relative stabilities and the thermal ionization energies of the doped Li (LiZn) in the different atomic layers for both the non-polar and polar surfaces. Our calculations indicate that the LiZn in the surface region is more stable than in the ZnO bulk, and the thermal ionization energy of the LiZn in the surface region is considerably bigger than in the ZnO bulk. So, the surface of ZnO film degrades the p-type conductivity of the Li-doped film significantly, which is important for the p-type doping in the low-dimensional ZnO system. Furthermore, we find that the observed difference in thermal ionization energy of LiZn between a surface and bulk actually stems from the different distributions of the electrostatic potentials between a surface and bulk.R66
    • Funds: Project supported by the Ph.D. Programs Fund of Ministry of Education of China (Grant No. 20093402110029), and the National Natural Science Foundation of China (Grant No. 2009CB939901).
    [1]

    Chang Y L, Zhang Q F, Sun H W, Jing L 2007 Acta Phys. Sin. 56 2399 (in Chinese) [常艳玲, 张琦锋, 孙晖吴, 锦雷 2007 物理学报 56 2399]

    [2]

    Yang J J, Fang Q Q,Wang B M, Wang C P, Zhou J, Li Y, Liu Y M, Lu Q R 2007 Acta Phys. Sin. 56 1116 (in Chinese) [杨景景, 方庆清, 王保明, 王翠平, 周军, 李雁, 刘艳美, 吕庆荣 2007 物理学报 56 1116]

    [3]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [4]

    Look D C, Claflin B, Alivov Y I, Park S J 2004 Phys. Stat. Sol. (a) 201 2203

    [5]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [6]

    Law M, Greene L E, Johnson J C, Saykally R, Yang P D 2005 Nature Materials 4 455

    [7]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [8]

    Vandewalle C G 2000 Phys. Rev. Lett. 85 1012

    [9]

    Zhang S B, Wei, S H, Zunger A 2001 Phys. Rev. B 63 075205

    [10]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502

    [11]

    Janotti A, Vandewalle C G 2007 Phys. Rev. B 76 165202

    [12]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [13]

    Kim Y S, Park C H 2009 Phys. Rev. Lett. 102 086403

    [14]

    Meyer B, Marx D 2003 Phys. Rev. B 67 035403

    [15]

    Meyer B, Marx D 2004 Phys. Rev. B 69 235420

    [16]

    Look D C, Mosbacker H L, Strzhemechny Y M, Brillson L J 2005 Superlattices Microstruct 38 406

    [17]

    Look D C 2007 Surf. Sci. 601 5315

    [18]

    Chambers S A 2007 Surf. Sci. 601 5313

    [19]

    Schmidt O, Kiesel P, Ehrentraut D, Fukuda T, Johnson N M 2007 Appl. Phys. A: Mater. Sci. Process 88 71

    [20]

    Allen M W, Swartz C H, Myers T H, Veal T D, Mcconville C F, Durbin1 S M 2010 Phys. Rev. B 81 075211

    [21]

    Pashley M D 1989 Phys. Rev. B 40 10481

    [22]

    Chadi D J 1987 J. Vac. Sci. Technol. A 5 834

    [23]

    Duke C B 1996 Chem. Rev. 96 1237

    [24]

    Zhang L, Wang E G, Xue Q K, Zhang S B, Zhang Z 2006 Phys. Rev. Lett. 97 126103

    [25]

    Ordejon P , Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [26]

    Sanchezportal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum Chem. 65 453

    [27]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchezportal D 2002 J. Phys.: Condens. Matter 14 2745

    [28]

    Troullier N, Martins J L 1993 Phys. Rev. B 43 1991

    [29]

    L. Kleinman and D. M. Bylander 1982 Phys. Rev. Lett. 48 1425

    [30]

    Bylander D M, Kleinman L 1990 Phys. Rev. B 41 907

    [31]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [32]

    Vandewalle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Park C H, Zhang S B, Wei S H 2002 Phys. Rev. B 66 073202

    [34]

    Wardle M G, Goss J P, Briddon P R 2005 Phys. Rev. B 71 155205

  • [1]

    Chang Y L, Zhang Q F, Sun H W, Jing L 2007 Acta Phys. Sin. 56 2399 (in Chinese) [常艳玲, 张琦锋, 孙晖吴, 锦雷 2007 物理学报 56 2399]

    [2]

    Yang J J, Fang Q Q,Wang B M, Wang C P, Zhou J, Li Y, Liu Y M, Lu Q R 2007 Acta Phys. Sin. 56 1116 (in Chinese) [杨景景, 方庆清, 王保明, 王翠平, 周军, 李雁, 刘艳美, 吕庆荣 2007 物理学报 56 1116]

    [3]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [4]

    Look D C, Claflin B, Alivov Y I, Park S J 2004 Phys. Stat. Sol. (a) 201 2203

    [5]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [6]

    Law M, Greene L E, Johnson J C, Saykally R, Yang P D 2005 Nature Materials 4 455

    [7]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [8]

    Vandewalle C G 2000 Phys. Rev. Lett. 85 1012

    [9]

    Zhang S B, Wei, S H, Zunger A 2001 Phys. Rev. B 63 075205

    [10]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502

    [11]

    Janotti A, Vandewalle C G 2007 Phys. Rev. B 76 165202

    [12]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [13]

    Kim Y S, Park C H 2009 Phys. Rev. Lett. 102 086403

    [14]

    Meyer B, Marx D 2003 Phys. Rev. B 67 035403

    [15]

    Meyer B, Marx D 2004 Phys. Rev. B 69 235420

    [16]

    Look D C, Mosbacker H L, Strzhemechny Y M, Brillson L J 2005 Superlattices Microstruct 38 406

    [17]

    Look D C 2007 Surf. Sci. 601 5315

    [18]

    Chambers S A 2007 Surf. Sci. 601 5313

    [19]

    Schmidt O, Kiesel P, Ehrentraut D, Fukuda T, Johnson N M 2007 Appl. Phys. A: Mater. Sci. Process 88 71

    [20]

    Allen M W, Swartz C H, Myers T H, Veal T D, Mcconville C F, Durbin1 S M 2010 Phys. Rev. B 81 075211

    [21]

    Pashley M D 1989 Phys. Rev. B 40 10481

    [22]

    Chadi D J 1987 J. Vac. Sci. Technol. A 5 834

    [23]

    Duke C B 1996 Chem. Rev. 96 1237

    [24]

    Zhang L, Wang E G, Xue Q K, Zhang S B, Zhang Z 2006 Phys. Rev. Lett. 97 126103

    [25]

    Ordejon P , Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [26]

    Sanchezportal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum Chem. 65 453

    [27]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchezportal D 2002 J. Phys.: Condens. Matter 14 2745

    [28]

    Troullier N, Martins J L 1993 Phys. Rev. B 43 1991

    [29]

    L. Kleinman and D. M. Bylander 1982 Phys. Rev. Lett. 48 1425

    [30]

    Bylander D M, Kleinman L 1990 Phys. Rev. B 41 907

    [31]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [32]

    Vandewalle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Park C H, Zhang S B, Wei S H 2002 Phys. Rev. B 66 073202

    [34]

    Wardle M G, Goss J P, Briddon P R 2005 Phys. Rev. B 71 155205

  • [1] Yang Yin-Tang, Wu Jun, Cai Yu-Rong, Ding Rui-Xue, Song Jiu-Xu, Shi Li-Chun. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [2] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [3] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [4] Yao Guang-Rui, Fan Guang-Han, Zheng Shu-Wen, Ma Jia-Hong, Chen Jun, Zhang Yong, Li Shu-Ti, Su Shi-Chen, Zhang Tao. First-principles study of p-type ZnO by Te-N codoping. Acta Physica Sinica, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [5] Li Wan-Jun, Fang Liang, Qin Guo-Ping, Ruan Hai-Bo, Kong Chun-Yang, Zheng Ji, Bian Ping, Xu Qing, Wu Fang. First-principles study of Ag-N dual-doped p-type ZnO. Acta Physica Sinica, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [6] Deng Sheng-Hua, Jiang Zhi-Lin. First-principles study on p-type ZnO codoped with F and Na. Acta Physica Sinica, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [7] Chen Li-Jing, Li Wei-Xue, Dai Jian-Feng, Wang Qing. First-prinicples study of Mn-N co-doped p-type ZnO. Acta Physica Sinica, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [8] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [9] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [10] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [11] Chen Kun, Fan Guang-Han, Zhang Yong, Ding Shao-Feng. First principles study of In-N codoped ZnO. Acta Physica Sinica, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [12] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [13] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [14] Shi Li-Bin, Xiao Zhen-Lin. Origin of ferromagnetic properties in Ni doped ZnO by the first principles study. Acta Physica Sinica, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [15] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [16] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [17] Qu Ling-Feng, Hou Qing-Yu, Xu Zhen-Chao, Zhao Chun-Wang. Photoelectric properties of Ti doped ZnO: First principles calculation. Acta Physica Sinica, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [18] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [19] Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles. Acta Physica Sinica, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [20] Zhao Hui-Fang, Cao Quan-Xi, Li Jian-Tao. First-principle study of N,Ga codoped p-type ZnO. Acta Physica Sinica, 2008, 57(9): 5828-5832. doi: 10.7498/aps.57.5828
  • Citation:
Metrics
  • Abstract views:  2070
  • PDF Downloads:  464
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2011
  • Accepted Date:  28 December 2011
  • Published Online:  05 August 2012

The surface effect on the p-type conductivity of Li-doped ZnO film

  • 1. Department of Physics, University of Science and Technology of China, Hefei 230026, China;
  • 2. Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230026, China
Fund Project:  Project supported by the Ph.D. Programs Fund of Ministry of Education of China (Grant No. 20093402110029), and the National Natural Science Foundation of China (Grant No. 2009CB939901).

Abstract: By using the first-principles method, we study the relative stabilities and the thermal ionization energies of the doped Li (LiZn) in the different atomic layers for both the non-polar and polar surfaces. Our calculations indicate that the LiZn in the surface region is more stable than in the ZnO bulk, and the thermal ionization energy of the LiZn in the surface region is considerably bigger than in the ZnO bulk. So, the surface of ZnO film degrades the p-type conductivity of the Li-doped film significantly, which is important for the p-type doping in the low-dimensional ZnO system. Furthermore, we find that the observed difference in thermal ionization energy of LiZn between a surface and bulk actually stems from the different distributions of the electrostatic potentials between a surface and bulk.R66

Reference (34)

Catalog

    /

    返回文章
    返回