Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation

Wang Ying Lu Tie-Cheng Wang Yue-Zhong Yue Shun-Li Qi Jian-Qi Pan Lei

Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation

Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei
PDF
Get Citation
  • Based on the density functional theory within plane-wave pesudopotential method, the band structure and elastic properties of spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) and -Al2O3, AlN are calculated. The spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) are calculated by using the 'virtual crystal approximation'. The results prove it possible to study the Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) by this approximation. The calculated elastic constants and hardness features accord well with the experimental results. The five structures in the Al2O3-AlN solid solution region all show brittle features and the Al23O27N5 shows the lowest brittleness. High hardness and low brittleness reflect that Al23O27N5 has a great flexural strength. Elastic property analysis confirms the mechanical stability, it also reveals that AlON has highly elastic anisotropy. Band structure analysis shows that the spinel AlON and -Al2O3, AlN are both direct bandgap materials. Hybridizations take place between Al-3p, 3s and O, N-2p orbitals near the Fermi level in the AlON. The calculated results are consistent with relevant experimental results, which provides a theoretical method and reference for the further study.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50872083), the Fund of Aeronautics Science, China (Grant No. 20100119003), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2009SCU11126).
    [1]

    McCauley J M, Parimal P, Chen M W, Gilde G, Strassburger E, Paliwal B, Ramesh K B, Dandekar D P 2009 J. Eur. Ceram. Soc. 29 223

    [2]

    Corbin N D 1989 J. Eur. Ceram. Soc. 5 143

    [3]

    Onyekwelu U O, Lowther J E 2008 Phys. Rev. B 77 094129

    [4]

    Wahl J M, Hartnett T M, Goldman L M 2005 Proc. SPIE 5786 71

    [5]

    McCauley J M, Corbin N D 1979 J. Am. Ceram. Soc. 62 476

    [6]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, McCauley J W 1982 Cera. Eng. Sci. Proc. 3 67

    [7]

    McCauley J M 1978 J. Am. Ceram. Soc. 61 372

    [8]

    Chang M F, Rudi M, Hubertus T H, Gijsbertus D W 2001 J. Am. Ceram. Soc. 84 2633

    [9]

    Onyekwelu U O, Lowther J E 2010 Chem. Phys. Lett. 494 323

    [10]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威 2012 物理学报 61 027101]

    [11]

    Bellaiche L 2000 Phys. Rev. B 61 7877 

    [12]

    Winkler B, Pickard C, Milman V 2002 Chem. Phys. Lett. 362 266

    [13]

    Ramer N J, Rappe A M 2000 Phys. Rev. B 62 743

    [14]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

    [15]

    Sin'ko G V, Smirnow N A 2002 J. Phys.: Condens Matter 14 6989

    [16]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1621 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1621]

    [17]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [18]

    Shang S L, Wang Y, Liu Z K 2007 Appl. Phys. Lett. 89 131909

    [19]

    Gladden J R, Jin H S, Maynard J D, Saxe P W, Page Y L 2004 Appl. Phys. Lett. 85 392

    [20]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [21]

    McNeil L E, Grimsditch M, French R H 1993 J. Am. Ceram. Soc. 76 1132

    [22]

    Graham E K, Munly W C, McCauley J M, Corbin N D 1988 J. Am. Ceram. Soc. 71 807

    [23]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [24]

    McCauley J W 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p127

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Yu B H, Liu M L, Chen D 2011 Acta Phys. Sin. 60 087105 (in Chinese) [余本海, 刘墨林, 陈东 2011 物理学报 60 087105]

    [27]

    Oganov A R, Dorogokupets P I 2003 Phys. Rev. B 67 224110

    [28]

    French R H 1990 J. Am. Ceram. Soc. 73 477

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 7806]

  • [1]

    McCauley J M, Parimal P, Chen M W, Gilde G, Strassburger E, Paliwal B, Ramesh K B, Dandekar D P 2009 J. Eur. Ceram. Soc. 29 223

    [2]

    Corbin N D 1989 J. Eur. Ceram. Soc. 5 143

    [3]

    Onyekwelu U O, Lowther J E 2008 Phys. Rev. B 77 094129

    [4]

    Wahl J M, Hartnett T M, Goldman L M 2005 Proc. SPIE 5786 71

    [5]

    McCauley J M, Corbin N D 1979 J. Am. Ceram. Soc. 62 476

    [6]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, McCauley J W 1982 Cera. Eng. Sci. Proc. 3 67

    [7]

    McCauley J M 1978 J. Am. Ceram. Soc. 61 372

    [8]

    Chang M F, Rudi M, Hubertus T H, Gijsbertus D W 2001 J. Am. Ceram. Soc. 84 2633

    [9]

    Onyekwelu U O, Lowther J E 2010 Chem. Phys. Lett. 494 323

    [10]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威 2012 物理学报 61 027101]

    [11]

    Bellaiche L 2000 Phys. Rev. B 61 7877 

    [12]

    Winkler B, Pickard C, Milman V 2002 Chem. Phys. Lett. 362 266

    [13]

    Ramer N J, Rappe A M 2000 Phys. Rev. B 62 743

    [14]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

    [15]

    Sin'ko G V, Smirnow N A 2002 J. Phys.: Condens Matter 14 6989

    [16]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1621 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1621]

    [17]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [18]

    Shang S L, Wang Y, Liu Z K 2007 Appl. Phys. Lett. 89 131909

    [19]

    Gladden J R, Jin H S, Maynard J D, Saxe P W, Page Y L 2004 Appl. Phys. Lett. 85 392

    [20]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [21]

    McNeil L E, Grimsditch M, French R H 1993 J. Am. Ceram. Soc. 76 1132

    [22]

    Graham E K, Munly W C, McCauley J M, Corbin N D 1988 J. Am. Ceram. Soc. 71 807

    [23]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [24]

    McCauley J W 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) p127

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Yu B H, Liu M L, Chen D 2011 Acta Phys. Sin. 60 087105 (in Chinese) [余本海, 刘墨林, 陈东 2011 物理学报 60 087105]

    [27]

    Oganov A R, Dorogokupets P I 2003 Phys. Rev. B 67 224110

    [28]

    French R H 1990 J. Am. Ceram. Soc. 73 477

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 7806]

  • [1] Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang. Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle. Acta Physica Sinica, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [2] Peng Li-Ming, Ding Wen-Jiang, Yu Wei-Yang, Tang Bi-Yu. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [3] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [4] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [5] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [6] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [7] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [8] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [9] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [10] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
  • Citation:
Metrics
  • Abstract views:  1909
  • PDF Downloads:  635
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2011
  • Accepted Date:  20 January 2012
  • Published Online:  20 August 2012

Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation

  • 1. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Department of Physics, Sichuan University, Chengdu 610064, China;
  • 2. International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015, China;
  • 3. Key Laboratory for High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50872083), the Fund of Aeronautics Science, China (Grant No. 20100119003), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2009SCU11126).

Abstract: Based on the density functional theory within plane-wave pesudopotential method, the band structure and elastic properties of spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) and -Al2O3, AlN are calculated. The spinel Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) are calculated by using the 'virtual crystal approximation'. The results prove it possible to study the Al(64 + x)/3(8-x)/3O(32-x)Nx (x=2, 5, 8) by this approximation. The calculated elastic constants and hardness features accord well with the experimental results. The five structures in the Al2O3-AlN solid solution region all show brittle features and the Al23O27N5 shows the lowest brittleness. High hardness and low brittleness reflect that Al23O27N5 has a great flexural strength. Elastic property analysis confirms the mechanical stability, it also reveals that AlON has highly elastic anisotropy. Band structure analysis shows that the spinel AlON and -Al2O3, AlN are both direct bandgap materials. Hybridizations take place between Al-3p, 3s and O, N-2p orbitals near the Fermi level in the AlON. The calculated results are consistent with relevant experimental results, which provides a theoretical method and reference for the further study.

Reference (29)

Catalog

    /

    返回文章
    返回