Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband and low-loss left-handed metamaterial composed of oblique triangular open-loop pairs resonator

Li Wen-Qiang Cao Xiang-Yu Gao Jun Liu Tao Yao Xu Ma Jia-Jun

Broadband and low-loss left-handed metamaterial composed of oblique triangular open-loop pairs resonator

Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Liu Tao, Yao Xu, Ma Jia-Jun
PDF
Get Citation
  • A method of realizing multiband and broadband left-handed metamaterials with low-loss is presented. By integrating oblique triangular open-loop pair resonator plus wire (OTOR-wire) with oblique triangular open-loop pair resonator (OTOR), the combined structure exhibits double LH passbands, which can form broad LH passband by adjusting the unit cell geometrical dimension. Simulation and experimental results and analysis demonstrate that this structure exhibits negative effective permittivity and permeability simultaneously in a frequency range from 9.3 GHz to 13.2 GHz, its relative negative refraction passband reaches 347%, and the figure of merit reaches 347.9. The idea can help us to design multiband and broadband left-handed metamaterials with low-loss
    • Funds: Project supported by the Key Program of Natural Science Foundation of Shanxi Province, China (Grant No. 2010JZ010), and the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003).
    [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [3]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [4]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Grzegorczyk, Kong J A 2005 Appl. Phys. Lett. 86 151909

    [5]

    Simovski R, He S L 2003 Phys. Lett. A 311 254

    [6]

    Zhu C, Liang C H, Li L 2010 Int. J. Electron Commun. 10 004

    [7]

    Nasrin A, Keyvan Forooraghi, Zahra Atlasbaf 2011 IEEE Antennas and Wireless Propagation Letters 10 524

    [8]

    Chen C H, Qu S B, Xu Z, Wang J F, Ma H, Zhou H 2011 Acta Phys. Sin. 60 024101 (in Chinese) [陈春晖, 屈绍波, 徐卓, 王甲富, 马华, 周航 2011 物理学报 60 024101]

    [9]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 J. Appl. Phys. 96 5338

    [10]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [11]

    Wang J F, Qu S B, Yang Y M, Ma H, Wu X, Xu Z 2009 Appl. Phys. Lett. 95 014105

    [12]

    Li M H, Yang H L, Tian Y, Hou D Y 2011 Journal of Magnetism and Magnetic Materials 323 607

    [13]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [14]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [15]

    Zsolt Szabo, Park G H, Ravi Hedge, Li E P 2010 IEEE Transaction on Microwave Theory and Techniques. 58 2646

    [16]

    Zhou J, Koschny T, Soukoulis C M 2008 Opt. Express 15 11147

    [17]

    Gorkunov M, Lapine M, Shamonina E, Ringhofer K H 2002 Eur. Phys. J. B 28 263

    [18]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理党报 59 8566]

    [19]

    Zhu C, Ma J J, Li L, Liang C H 2010 IEEE Antennas Wireless Propag. Lett. 9 99

  • [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [3]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [4]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Grzegorczyk, Kong J A 2005 Appl. Phys. Lett. 86 151909

    [5]

    Simovski R, He S L 2003 Phys. Lett. A 311 254

    [6]

    Zhu C, Liang C H, Li L 2010 Int. J. Electron Commun. 10 004

    [7]

    Nasrin A, Keyvan Forooraghi, Zahra Atlasbaf 2011 IEEE Antennas and Wireless Propagation Letters 10 524

    [8]

    Chen C H, Qu S B, Xu Z, Wang J F, Ma H, Zhou H 2011 Acta Phys. Sin. 60 024101 (in Chinese) [陈春晖, 屈绍波, 徐卓, 王甲富, 马华, 周航 2011 物理学报 60 024101]

    [9]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 J. Appl. Phys. 96 5338

    [10]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [11]

    Wang J F, Qu S B, Yang Y M, Ma H, Wu X, Xu Z 2009 Appl. Phys. Lett. 95 014105

    [12]

    Li M H, Yang H L, Tian Y, Hou D Y 2011 Journal of Magnetism and Magnetic Materials 323 607

    [13]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [14]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [15]

    Zsolt Szabo, Park G H, Ravi Hedge, Li E P 2010 IEEE Transaction on Microwave Theory and Techniques. 58 2646

    [16]

    Zhou J, Koschny T, Soukoulis C M 2008 Opt. Express 15 11147

    [17]

    Gorkunov M, Lapine M, Shamonina E, Ringhofer K H 2002 Eur. Phys. J. B 28 263

    [18]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理党报 59 8566]

    [19]

    Zhu C, Ma J J, Li L, Liang C H 2010 IEEE Antennas Wireless Propag. Lett. 9 99

  • [1] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [2] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [3] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
  • Citation:
Metrics
  • Abstract views:  1540
  • PDF Downloads:  16933
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2011
  • Accepted Date:  06 December 2011
  • Published Online:  05 August 2012

Broadband and low-loss left-handed metamaterial composed of oblique triangular open-loop pairs resonator

  • 1. Telecommunication Engineering Institute of Air Force Engineering University, Xi’an Shannxi 710077, China
Fund Project:  Project supported by the Key Program of Natural Science Foundation of Shanxi Province, China (Grant No. 2010JZ010), and the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003).

Abstract: A method of realizing multiband and broadband left-handed metamaterials with low-loss is presented. By integrating oblique triangular open-loop pair resonator plus wire (OTOR-wire) with oblique triangular open-loop pair resonator (OTOR), the combined structure exhibits double LH passbands, which can form broad LH passband by adjusting the unit cell geometrical dimension. Simulation and experimental results and analysis demonstrate that this structure exhibits negative effective permittivity and permeability simultaneously in a frequency range from 9.3 GHz to 13.2 GHz, its relative negative refraction passband reaches 347%, and the figure of merit reaches 347.9. The idea can help us to design multiband and broadband left-handed metamaterials with low-loss

Reference (19)

Catalog

    /

    返回文章
    返回