搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁谐振器加载的宽频带超材料吸波体的设计

顾超 屈绍波 裴志斌 徐卓 柏鹏 彭卫东 林宝勤

基于磁谐振器加载的宽频带超材料吸波体的设计

顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤
PDF
导出引用
导出核心图
  • 基于加载集总元件的磁谐振器设计了一种宽频带、极化不敏感和宽入射角的超材料吸波体.该吸波体的结构单元由加载集总元件的磁谐振器、介质基板和金属背板组成.仿真得到的加载集总元件和不加载集总元件情况下一维阵列结构吸波体的吸收率表明,相对于不加载集总元件的情况,加载集总元件的一维阵列结构吸波体能够实现宽频带吸波.仿真得到的集总电阻和集总电容取不同值时一维阵列结构吸波体的吸收率表明,集总电阻和集总电容都存在一个最佳值,此时吸波体的吸收率最高、吸收带宽最宽.仿真得到的基板有耗和无耗情况下一维阵列结构吸波体的吸收率表明,
    • 基金项目: 国家自然科学基金(批准号:60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省自然科学基金(批准号:SJ08F01)资助的课题.
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]
    [4]
    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [7]
    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]
    [10]
    [11]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [12]

    Liu L, He S 2004 Opt. Express 12 4835

    [13]
    [14]
    [15]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microw. Opt. Techn. Lett. 44 546

    [16]
    [17]

    Engheta N 2002 IEEE Antennas Wireless Propag. 1 10

    [18]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [19]
    [20]

    Al A, Bilotti F, Engheta N, Vegni L 2007 IEEE Trans. Antennas Propag. 55 882

    [21]
    [22]
    [23]

    Ali A, Khan M A, Hu Z 2007 Electron. Lett. 43 528

    [24]
    [25]

    Tseng C H,Chang C L 2008 IEEE Microwave. Wireless Compon. Lett. 18 25

    [26]
    [27]

    Bonache J, Gil I, Garca G J, Martn F 2005 Electron. Lett. 41 810

    [28]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [29]
    [30]
    [31]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Techn. 47 2075

    [32]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [33]
    [34]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [35]
    [36]
    [37]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [38]
    [39]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [40]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [41]
  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]
    [4]
    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [7]
    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]
    [10]
    [11]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [12]

    Liu L, He S 2004 Opt. Express 12 4835

    [13]
    [14]
    [15]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microw. Opt. Techn. Lett. 44 546

    [16]
    [17]

    Engheta N 2002 IEEE Antennas Wireless Propag. 1 10

    [18]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [19]
    [20]

    Al A, Bilotti F, Engheta N, Vegni L 2007 IEEE Trans. Antennas Propag. 55 882

    [21]
    [22]
    [23]

    Ali A, Khan M A, Hu Z 2007 Electron. Lett. 43 528

    [24]
    [25]

    Tseng C H,Chang C L 2008 IEEE Microwave. Wireless Compon. Lett. 18 25

    [26]
    [27]

    Bonache J, Gil I, Garca G J, Martn F 2005 Electron. Lett. 41 810

    [28]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [29]
    [30]
    [31]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Techn. 47 2075

    [32]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [33]
    [34]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [35]
    [36]
    [37]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [38]
    [39]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [40]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [41]
  • [1] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [2] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [3] 徐卓, 屈绍波, 王甲富, 马华, 周航, 陈春晖. 基于单面金属结构的二维宽带左手材料. 物理学报, 2011, 60(2): 024101. doi: 10.7498/aps.60.024101
    [4] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [5] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于集总元件和负微分元件的有源可调谐超材料传输线. 物理学报, 2014, 63(2): 027802. doi: 10.7498/aps.63.027802
    [6] 王甲富, 张介秋, 马华, 杨一鸣, 吴翔, 屈绍波, 徐卓, 夏颂. 电谐振器和磁谐振器构成的左手材料的实验验证. 物理学报, 2010, 59(3): 1847-1850. doi: 10.7498/aps.59.1847
    [7] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [8] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料. 物理学报, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [9] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现. 物理学报, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [10] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1560
  • PDF下载量:  1357
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-14
  • 修回日期:  2011-03-24
  • 刊出日期:  2011-08-15

基于磁谐振器加载的宽频带超材料吸波体的设计

  • 1. 空军工程大学理学院,西安 710051;
  • 2. 西安交通大学电子陶瓷与器件教育部重点实验室,西安 710049;
  • 3. 空军工程大学综合电子信息系统与电子对抗技术研究中心,西安 710051
    基金项目: 

    国家自然科学基金(批准号:60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省自然科学基金(批准号:SJ08F01)资助的课题.

摘要: 基于加载集总元件的磁谐振器设计了一种宽频带、极化不敏感和宽入射角的超材料吸波体.该吸波体的结构单元由加载集总元件的磁谐振器、介质基板和金属背板组成.仿真得到的加载集总元件和不加载集总元件情况下一维阵列结构吸波体的吸收率表明,相对于不加载集总元件的情况,加载集总元件的一维阵列结构吸波体能够实现宽频带吸波.仿真得到的集总电阻和集总电容取不同值时一维阵列结构吸波体的吸收率表明,集总电阻和集总电容都存在一个最佳值,此时吸波体的吸收率最高、吸收带宽最宽.仿真得到的基板有耗和无耗情况下一维阵列结构吸波体的吸收率表明,

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回