Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Band structure and optical absorption in InAs/GaSb quantum well

Liu Zhu Zhao Zhi-Fei Guo Hao-Min Wang Yu-Qi

Band structure and optical absorption in InAs/GaSb quantum well

Liu Zhu, Zhao Zhi-Fei, Guo Hao-Min, Wang Yu-Qi
PDF
Get Citation
  • An analysis of band structure, wave function distribution and absorption of linearly polarized light along the [110] direction in InAs/GaSb quantum well grown along the [001] direction is performed by the eight-band K-P model and finite difference method. Our study shows that the band structure and wave function distribution could be regulated effectively by changing the thickness of InAs or GaSb layer. When the bottom of conduction subband and the top of the valence subband are in resonance, the hybridization of ground electron and light-hole state at the zone-center is very weak, and the overlap between the wave function of the ground and the first-excited electron state is considerable, according to the theory of wave function engineering, so the transition rate between the ground and the first-excited electron state at the zone-center is larger than that when the bottom of conduction subband and the top of the valence subband are not in resonance. This is very important for designing advanced optoelectronic devices such as far-infrared or mid-infrared cascade lasers and detecters based on InAs/GaSb quantum wells.
    [1]

    Luo J, Munekata H, Fang F F, Stiles J 1990 Phys. Rev. B 41 7685

    [2]

    Yang R Q 1995 Superlatt. Microstrt. 17 77

    [3]

    Chiand H C, Tsay S F, Chau Z M, Lo I 1996 Phys. Rev. Lett. 77 2053

    [4]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613

    [5]

    Cooper L J, Patel N K, Drouot V 1998 Phys. Rev. B 57 11915

    [6]

    Zakharova A, Yen S T, Chao K A 2001 Phys. Rev. B 64 235332

    [7]

    Magri R, Wang L W, Zunger A, Vurgaftman I, Meyer J R 2000 Phys. Rev. B 61 10235

    [8]

    Cartoixá X, Ting D Z Y, McGill T C 2003 Phys. Rev. B 68 235319

    [9]

    Munekata H, Maan J C, Chang L L, Esaki L 1987 J. Vac. Sci. Technol. B 5 809

    [10]

    Altarelli M 1983 Phys. Rev. B 28 842

    [11]

    Capasso F 1987 Science 235 172

    [12]

    Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S 2000 Appl. Phys. Lett. 76 1161

    [13]

    Ram-Mohan L R, Yoo K H 2006 J. Phys. Condens. Matter 18 R901

    [14]

    Helgesen P, Sizmann R, Lovold S, Paulsen A 1992 Spie. Vol. 1675 271

    [15]

    Cheng J P, Kono J, McCombe B D, Lo I, Mitchel W C, Stutz C E 1995 Phys. Rev. Lett. 74 450

    [16]

    Halvorsen E, Galperin Y, Chao K A 2000 Phys. Rev. B 61 16743

    [17]

    Lo I, Mitchel W C, Kaspi R, Elhamri S, Newrock R S 1994 Appl. Phys. Lett. 65 1024

    [18]

    Xu W, Li L L, Dong H M, Gumbs G, Folkes P A 2010 J. Appl. Phys. 108 053709

    [19]

    Bastard G 1981 Phys. Rev. B 24 5693

    [20]

    Li L L, Xu W, Peeters F M 2010 Phys. Rev. B 82 235422

    [21]

    Li L L, Xu W, Zeng Z, Wright A R, Zhang C, Zhang J, Shi Y L, Lu T C 2009 Microelectronics Journal 40 812

    [22]

    Wei X F, Xu W, Zhang J, Zeng Z, Zhang C 2008 Physics E 40 1069

    [23]

    Semenikhin I, Zakharova A, Nilsson K, Chao K A 2007 Phys. Rev. B 76 035335

    [24]

    Semenikhin I, Zakharova A, Chao K A 2008 Phys. Rev. B 77 113307

    [25]

    Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J, Walker P J 1997 Phys. Rev. Lett. 79 3034

    [26]

    Poulter A J L, Lakrimi M, Nicholas R J, Mason N J, Walker P J 1999 Phys. Rev. B 60 1884

    [27]

    Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A, Pepper M 1999 Phys. Rev. Lett. 82 2362

    [28]

    Zakharova A, Yen S T, Chao K A 2002 Phys. Rev. B 66 085312

    [29]

    Zakharova A, Semenikhin I, Chao K A 2011 JETP Lett. 94 660

  • [1]

    Luo J, Munekata H, Fang F F, Stiles J 1990 Phys. Rev. B 41 7685

    [2]

    Yang R Q 1995 Superlatt. Microstrt. 17 77

    [3]

    Chiand H C, Tsay S F, Chau Z M, Lo I 1996 Phys. Rev. Lett. 77 2053

    [4]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613

    [5]

    Cooper L J, Patel N K, Drouot V 1998 Phys. Rev. B 57 11915

    [6]

    Zakharova A, Yen S T, Chao K A 2001 Phys. Rev. B 64 235332

    [7]

    Magri R, Wang L W, Zunger A, Vurgaftman I, Meyer J R 2000 Phys. Rev. B 61 10235

    [8]

    Cartoixá X, Ting D Z Y, McGill T C 2003 Phys. Rev. B 68 235319

    [9]

    Munekata H, Maan J C, Chang L L, Esaki L 1987 J. Vac. Sci. Technol. B 5 809

    [10]

    Altarelli M 1983 Phys. Rev. B 28 842

    [11]

    Capasso F 1987 Science 235 172

    [12]

    Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S 2000 Appl. Phys. Lett. 76 1161

    [13]

    Ram-Mohan L R, Yoo K H 2006 J. Phys. Condens. Matter 18 R901

    [14]

    Helgesen P, Sizmann R, Lovold S, Paulsen A 1992 Spie. Vol. 1675 271

    [15]

    Cheng J P, Kono J, McCombe B D, Lo I, Mitchel W C, Stutz C E 1995 Phys. Rev. Lett. 74 450

    [16]

    Halvorsen E, Galperin Y, Chao K A 2000 Phys. Rev. B 61 16743

    [17]

    Lo I, Mitchel W C, Kaspi R, Elhamri S, Newrock R S 1994 Appl. Phys. Lett. 65 1024

    [18]

    Xu W, Li L L, Dong H M, Gumbs G, Folkes P A 2010 J. Appl. Phys. 108 053709

    [19]

    Bastard G 1981 Phys. Rev. B 24 5693

    [20]

    Li L L, Xu W, Peeters F M 2010 Phys. Rev. B 82 235422

    [21]

    Li L L, Xu W, Zeng Z, Wright A R, Zhang C, Zhang J, Shi Y L, Lu T C 2009 Microelectronics Journal 40 812

    [22]

    Wei X F, Xu W, Zhang J, Zeng Z, Zhang C 2008 Physics E 40 1069

    [23]

    Semenikhin I, Zakharova A, Nilsson K, Chao K A 2007 Phys. Rev. B 76 035335

    [24]

    Semenikhin I, Zakharova A, Chao K A 2008 Phys. Rev. B 77 113307

    [25]

    Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J, Walker P J 1997 Phys. Rev. Lett. 79 3034

    [26]

    Poulter A J L, Lakrimi M, Nicholas R J, Mason N J, Walker P J 1999 Phys. Rev. B 60 1884

    [27]

    Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A, Pepper M 1999 Phys. Rev. Lett. 82 2362

    [28]

    Zakharova A, Yen S T, Chao K A 2002 Phys. Rev. B 66 085312

    [29]

    Zakharova A, Semenikhin I, Chao K A 2011 JETP Lett. 94 660

  • [1] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [2] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [3] Hai Wen-Hua, Cai Li-Hua, Wu Yun-Wen. Energy band structure of two ions in a one-dimensional Paul trap. Acta Physica Sinica, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [4] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [5] Li Li-Ming, Ning Feng, Tang Li-Ming. First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires. Acta Physica Sinica, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [6] Ma Xiao-Feng, Wang Yi-Zhe, Zhou Cheng-Yue. Structural and optical properties of a-Si ∶H/SiO2 multiple quantum wells. Acta Physica Sinica, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [7] Chang Ben-Kang, Yang Zhi, Zou Ji-Jun. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [8] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of (InAs)1/(GaSb)1 superlattice nanowires. Acta Physica Sinica, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [9] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [10] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
  • Citation:
Metrics
  • Abstract views:  1771
  • PDF Downloads:  7248
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2012
  • Accepted Date:  21 May 2012
  • Published Online:  05 November 2012

Band structure and optical absorption in InAs/GaSb quantum well

  • 1. Applied Technology Laboratory of Materials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

Abstract: An analysis of band structure, wave function distribution and absorption of linearly polarized light along the [110] direction in InAs/GaSb quantum well grown along the [001] direction is performed by the eight-band K-P model and finite difference method. Our study shows that the band structure and wave function distribution could be regulated effectively by changing the thickness of InAs or GaSb layer. When the bottom of conduction subband and the top of the valence subband are in resonance, the hybridization of ground electron and light-hole state at the zone-center is very weak, and the overlap between the wave function of the ground and the first-excited electron state is considerable, according to the theory of wave function engineering, so the transition rate between the ground and the first-excited electron state at the zone-center is larger than that when the bottom of conduction subband and the top of the valence subband are not in resonance. This is very important for designing advanced optoelectronic devices such as far-infrared or mid-infrared cascade lasers and detecters based on InAs/GaSb quantum wells.

Reference (29)

Catalog

    /

    返回文章
    返回