Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene

Zhao Geng Cheng Xiao-Man Tian Hai-Jun Du Bo-Qun Liang Xiao-Yu Wu Feng

The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene

Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng
PDF
Get Citation
  • C60/Pentacene-based ambipolar organic heterostructure field-effect transistors (AOFETs) with Al source-drain (S/D) electrodes modified by inserting a transition metal oxide (V2O5) layer are fabricated. Compared with the device without V2O5 modified layer, the modified device shows good ambipolar characteristics with a hole mobility of 8.6× 10-2 cm2/V·s-1 and an electron mobility of 6.4× 10-2 cm2/V·s-1, and threshold voltages of 25 and -25 V, respectively. These performance improvements are ascribed to the presence of V2O5 layer at the Pentacene/Al interface which significantly reduces the source/drain contact resistance, increases the holes injection and makes electronic and hole injection close to balance. This result indicates that modified electrodes by V2O5 film is an effective approach to fabricating low cost and high performance AOFETs for realizing commercial applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61076065), the Natural Science Foundation of Tianjin, China (Grant No. 07JCYBJC12700).
    [1]

    Ohmori Y, Muro K, Onoda M, Yoshinoi K 1992 J. Appl. Phys. 72 207

    [2]

    Liu P, Wu Y L, Li Y N, Zhu S P 2006 J. Am. Chem. Soc. 128 4554

    [3]

    Hu Y C, Dong G F, Wang L D, Liang Y, Qiu Y 2004 Chin. Phys. Lett. 21 723

    [4]

    Di C A, Yu G, Liu Y Q, Guo Y L, Wang Y, Wu W P, Zhu D B 2008 Adv. Mater. 20 1286

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [ 聂国政, 彭俊彪, 周仁龙 2011 物理学报 60 127304]

    [6]

    Meijer E J, DeLeeuw D M, Setayesh S 2003 Nature Mater. 2 678

    [7]

    Tada K, Harada H, Yoshino K 1996 J. Appl. Phys. 35 L944

    [8]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 162109

    [9]

    Zhang X H, Kippelen B 2008 Appl. Phys. Lett. 93 133305

    [10]

    Kuwahara E, Kubozono Y, Hosokawa T, Nagano T, Masunari K, Fujiwara A 2004 Appl. Phys. Lett. 85 4765

    [11]

    Hu Y, Tsubasa K, Hidenori O 2009 Appl. Phys. Lett. 94 023305

    [12]

    Li J, Zhang X W, Zhang L, Haq K, Jiang X Y, Zhu W Q, Zhang Z L 2009 Semicond. Sci. Technol. 24 115012

    [13]

    Liu X Q, Zhang T, Wang L J, Li M Y, Feng C G, Ma D G 2008 Chin. Phys. Lett. 25 758

    [14]

    Li S H, Xu Z, Ma L, Chu C W, Yang Y 2007 Appl. Phys. Lett. 91 083507

    [15]

    Chu C W, Li S H, Chen C W, Shrotriya V, Yang Y 2005 Appl. Phys. Lett. 87 193508

    [16]

    Generali G, Capelli R, Toffanin S, Facchetti A, Michele M 2010 Microelectronics Reliabilit. 50 1861

    [17]

    Ishii H, Sugiyama K, Ito E, Seki K 1999 Adv. Mater. 11 605

    [18]

    Zhao G, Cheng X M, Tian H J, Du B Q, Liang X Y 2011 Chin. Phys. Lett. 28 127203

    [19]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [20]

    Yi M,Yu S, Feng C, Zhang T, Ma D, Meruvia M S, Hümmelgen I A 2007 Organic Electronics 8 311

    [21]

    Li S H, Xu Z, Yang G, Ma L, Yang Y 2008 Appl. Phys. Lett. 93 213301

    [22]

    Lin Y J, Li Y C, Wen T C, Huang L M, ChenY K, Yeh H J, Wang Y H 2008 Appl. Phys. Lett. 93 043305

  • [1]

    Ohmori Y, Muro K, Onoda M, Yoshinoi K 1992 J. Appl. Phys. 72 207

    [2]

    Liu P, Wu Y L, Li Y N, Zhu S P 2006 J. Am. Chem. Soc. 128 4554

    [3]

    Hu Y C, Dong G F, Wang L D, Liang Y, Qiu Y 2004 Chin. Phys. Lett. 21 723

    [4]

    Di C A, Yu G, Liu Y Q, Guo Y L, Wang Y, Wu W P, Zhu D B 2008 Adv. Mater. 20 1286

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [ 聂国政, 彭俊彪, 周仁龙 2011 物理学报 60 127304]

    [6]

    Meijer E J, DeLeeuw D M, Setayesh S 2003 Nature Mater. 2 678

    [7]

    Tada K, Harada H, Yoshino K 1996 J. Appl. Phys. 35 L944

    [8]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 162109

    [9]

    Zhang X H, Kippelen B 2008 Appl. Phys. Lett. 93 133305

    [10]

    Kuwahara E, Kubozono Y, Hosokawa T, Nagano T, Masunari K, Fujiwara A 2004 Appl. Phys. Lett. 85 4765

    [11]

    Hu Y, Tsubasa K, Hidenori O 2009 Appl. Phys. Lett. 94 023305

    [12]

    Li J, Zhang X W, Zhang L, Haq K, Jiang X Y, Zhu W Q, Zhang Z L 2009 Semicond. Sci. Technol. 24 115012

    [13]

    Liu X Q, Zhang T, Wang L J, Li M Y, Feng C G, Ma D G 2008 Chin. Phys. Lett. 25 758

    [14]

    Li S H, Xu Z, Ma L, Chu C W, Yang Y 2007 Appl. Phys. Lett. 91 083507

    [15]

    Chu C W, Li S H, Chen C W, Shrotriya V, Yang Y 2005 Appl. Phys. Lett. 87 193508

    [16]

    Generali G, Capelli R, Toffanin S, Facchetti A, Michele M 2010 Microelectronics Reliabilit. 50 1861

    [17]

    Ishii H, Sugiyama K, Ito E, Seki K 1999 Adv. Mater. 11 605

    [18]

    Zhao G, Cheng X M, Tian H J, Du B Q, Liang X Y 2011 Chin. Phys. Lett. 28 127203

    [19]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [20]

    Yi M,Yu S, Feng C, Zhang T, Ma D, Meruvia M S, Hümmelgen I A 2007 Organic Electronics 8 311

    [21]

    Li S H, Xu Z, Yang G, Ma L, Yang Y 2008 Appl. Phys. Lett. 93 213301

    [22]

    Lin Y J, Li Y C, Wen T C, Huang L M, ChenY K, Yeh H J, Wang Y H 2008 Appl. Phys. Lett. 93 043305

  • [1] Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying. Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts. Acta Physica Sinica, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [2] Kang Hai-Yan, Hu Hui-Yong, Wang Bin, Xuan Rong-Xi, Song Jian-Jun, Zhao Chen-Dong, Xu Xiao-Cang. Analytic models for solid state plasma of Si/Ge/Si heterogeneous and lateral SPiN diode. Acta Physica Sinica, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [3] Nie Guo-Zheng, Peng Jun-Biao, Zhou Ren-Long. Organic field-effect transistor with low-cost CuI/Al bilayer electrode. Acta Physica Sinica, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [4] Shi Wei-Wei, Li-Wen, Yi Ming-Dong, Xie Ling-Hai, Wei-Wei, Huang Wei. Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. Acta Physica Sinica, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [5] Cheng Li-Feng, Ren Cheng, Wang Ping, Feng Shuai. Study on unidirectional transmission of photonic crystal diodes based on heterostructure interface optimization. Acta Physica Sinica, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [6] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [7] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [8] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [9] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [10] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
  • Citation:
Metrics
  • Abstract views:  1198
  • PDF Downloads:  944
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2012
  • Accepted Date:  12 May 2012
  • Published Online:  05 November 2012

The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene

  • 1. School of Science, Tianjin University of Technology, Tianjin 300384, China;
  • 2. Institute of Material Physics, Tianjin University of Technology, Key Laboratory of Display Material and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory of Photoelectric Materials and Device, Tianjin 300384, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61076065), the Natural Science Foundation of Tianjin, China (Grant No. 07JCYBJC12700).

Abstract: C60/Pentacene-based ambipolar organic heterostructure field-effect transistors (AOFETs) with Al source-drain (S/D) electrodes modified by inserting a transition metal oxide (V2O5) layer are fabricated. Compared with the device without V2O5 modified layer, the modified device shows good ambipolar characteristics with a hole mobility of 8.6× 10-2 cm2/V·s-1 and an electron mobility of 6.4× 10-2 cm2/V·s-1, and threshold voltages of 25 and -25 V, respectively. These performance improvements are ascribed to the presence of V2O5 layer at the Pentacene/Al interface which significantly reduces the source/drain contact resistance, increases the holes injection and makes electronic and hole injection close to balance. This result indicates that modified electrodes by V2O5 film is an effective approach to fabricating low cost and high performance AOFETs for realizing commercial applications.

Reference (22)

Catalog

    /

    返回文章
    返回