Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A methode of estimating the reflectivity and refractive-index modulation of double-cladding large core fiber Bragg grating

Zhou Ren-Lai Ju You-Lun Yang Chao Wang Wei Wang Yue-Zhu

A methode of estimating the reflectivity and refractive-index modulation of double-cladding large core fiber Bragg grating

Zhou Ren-Lai, Ju You-Lun, Yang Chao, Wang Wei, Wang Yue-Zhu
PDF
Get Citation
  • A simple and practical method of estimating reflectivity and refractive-index modulation is reported when writing fiber Bragg grating (FBG) into silica fiber core based on 800 nm femtosecond laser pulses and a phase mask. By monitoring and recording the variation of the fiber laser output power, the reflectivity and refractive-index modulation are estimated theoretically and experimentally. The reflectivity of FBG is approximate 96.4%, and the refractive-index modulation is about 1.2×10-3. When the FBG is used as a linear cavity mirror, 15.5 W of output power is obtained under an incident pump power of 51.6 W, corresponding to a slop efficiency of 37.9%. A beam factor of M2=1.4 at an output power of 15 W is measured by using the knife-edge method.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011, 61078008), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0067).
    [1]

    Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647

    [2]

    Hill K O, Malo B, Bilodeau F, Johnson D C, Albert J 1993 Appl. Phys. Lett. 62 1035

    [3]

    Lai Y, Martinez A, Khrushchev I, Bennion I 2006 Opt. Lett. 31 1672

    [4]

    Thomas J, Wikszak E, clausnitzer T, Fuchs U, Zeitner U, Nolte S, Tunnermann A 2007 Appl. Phys. A 86 153

    [5]

    Martinez A, Dubov M, Khrushchev I, Bennion I 2004 Electron. Lett. 40 1170

    [6]

    Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Henderson G, Unruh J 2003 Opt. Lett. 28 995

    [7]

    Mihailov S J, Smelser C W, Grobnic D, Walker R B, Ping Lu, Huiming D, Unruh J 2004 J. Lightwave Technol. 22 94

    [8]

    Dragomir A, Nikogosyan D. N, Zagorulko K A, Kryukov P G, Dianov E M 2003 Opt. Lett. 28 2171

    [9]

    Bernier M, Faucher D, Vallée R, Saliminia A, Androz G, Sheng Y, Chin S L 2007 Opt. Lett. 32 454

    [10]

    Martinez A, Khrushchev I, Bennion I 2006 Conference on Lasers& Electro-Optics (CLEO 2006), May 22, 2006 p2188

    [11]

    Martinez A, Khrushchev I Y, Bennion I 2005 Electron. Lett. 41 176

    [12]

    Diasty F E, A. Heaney, Erdogan T 2001 Appl. Opt. 40 890

    [13]

    Limberger D F, Salathé H G, Hindle R P, Douay F, Fertein M, Przygodzki E 2004 Appl. Phys. Lett. 84 4983

    [14]

    Stuart J D, Terence K A 1999 J. Lightwave Technol. 17 948

    [15]

    Xu J Q, Prabhu M, Lu J R, Ueda K I, Xing D 2001 Appl. Opt. 40 1983

    [16]

    Jackson S D and, King T A 1996 Proceedings of SPIE. 2676 369

  • [1]

    Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647

    [2]

    Hill K O, Malo B, Bilodeau F, Johnson D C, Albert J 1993 Appl. Phys. Lett. 62 1035

    [3]

    Lai Y, Martinez A, Khrushchev I, Bennion I 2006 Opt. Lett. 31 1672

    [4]

    Thomas J, Wikszak E, clausnitzer T, Fuchs U, Zeitner U, Nolte S, Tunnermann A 2007 Appl. Phys. A 86 153

    [5]

    Martinez A, Dubov M, Khrushchev I, Bennion I 2004 Electron. Lett. 40 1170

    [6]

    Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Henderson G, Unruh J 2003 Opt. Lett. 28 995

    [7]

    Mihailov S J, Smelser C W, Grobnic D, Walker R B, Ping Lu, Huiming D, Unruh J 2004 J. Lightwave Technol. 22 94

    [8]

    Dragomir A, Nikogosyan D. N, Zagorulko K A, Kryukov P G, Dianov E M 2003 Opt. Lett. 28 2171

    [9]

    Bernier M, Faucher D, Vallée R, Saliminia A, Androz G, Sheng Y, Chin S L 2007 Opt. Lett. 32 454

    [10]

    Martinez A, Khrushchev I, Bennion I 2006 Conference on Lasers& Electro-Optics (CLEO 2006), May 22, 2006 p2188

    [11]

    Martinez A, Khrushchev I Y, Bennion I 2005 Electron. Lett. 41 176

    [12]

    Diasty F E, A. Heaney, Erdogan T 2001 Appl. Opt. 40 890

    [13]

    Limberger D F, Salathé H G, Hindle R P, Douay F, Fertein M, Przygodzki E 2004 Appl. Phys. Lett. 84 4983

    [14]

    Stuart J D, Terence K A 1999 J. Lightwave Technol. 17 948

    [15]

    Xu J Q, Prabhu M, Lu J R, Ueda K I, Xing D 2001 Appl. Opt. 40 1983

    [16]

    Jackson S D and, King T A 1996 Proceedings of SPIE. 2676 369

  • [1] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [2] Feng Su-Juan, Shang Liang, Mao Qing-He. Continuously adjusting the reflectivity of fiber loop mirror using a polarization controller. Acta Physica Sinica, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [3] Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Wang Xiao-Hui, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [4] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [5] Wang Zhen-De, Liu Nian-Hua. Reflectivity of semi-infinite one-dimensional photonic crystal composed of alternate layers of ordinary material and negative refraction material. Acta Physica Sinica, 2009, 58(1): 559-564. doi: 10.7498/aps.58.559
    [6] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [7] Zhang Jing-He, Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [8] Liu Shi-Yuan, Zhang Chuan-Wei, Gu Hua-Yong, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [9] Xu Min, Zhang Yue-Heng, Shen Wen-Zhong. Reflectivity and phase shift of semiconductor far-infrared mirrors. Acta Physica Sinica, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [10] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
  • Citation:
Metrics
  • Abstract views:  3506
  • PDF Downloads:  552
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2012
  • Accepted Date:  07 July 2012
  • Published Online:  20 December 2012

A methode of estimating the reflectivity and refractive-index modulation of double-cladding large core fiber Bragg grating

  • 1. National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, No. 2, Yikuang Street, Nangang District, Harbin 150080, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011, 61078008), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0067).

Abstract: A simple and practical method of estimating reflectivity and refractive-index modulation is reported when writing fiber Bragg grating (FBG) into silica fiber core based on 800 nm femtosecond laser pulses and a phase mask. By monitoring and recording the variation of the fiber laser output power, the reflectivity and refractive-index modulation are estimated theoretically and experimentally. The reflectivity of FBG is approximate 96.4%, and the refractive-index modulation is about 1.2×10-3. When the FBG is used as a linear cavity mirror, 15.5 W of output power is obtained under an incident pump power of 51.6 W, corresponding to a slop efficiency of 37.9%. A beam factor of M2=1.4 at an output power of 15 W is measured by using the knife-edge method.

Reference (16)

Catalog

    /

    返回文章
    返回