Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lipid exhange between membranes: effects of temperature and ionic strength

Jiang Zhong-Ying Zhang Guo-Liang Ma Jing Zhu Tao

Lipid exhange between membranes: effects of temperature and ionic strength

Jiang Zhong-Ying, Zhang Guo-Liang, Ma Jing, Zhu Tao
PDF
Get Citation
  • Transmembrane lipid exchange is critical to membrane function and pharmaceutical application. The exchange process is not fully understood and it is explored by quartz crystal microbalance with dissipation monitor method in this paper. It is found that the vesicle deformation discrepancy is not significant for the supported-lipid-bilayer-attached vesicles under different thermal and ionic strength conditions. And hence the total intermembrane contact area is determined by the vesicle adsorption amount. The maximum total intermembrane contact area decreases with the increase of temperature and the decrease of ionic strength. The changes of the vesicle adsorption rate and the transmembrane lipid exchange rate induced by temperature and ionic strength are elucidated to understand the observation above. The study helps explain some physiological phenomena and provides some guidelines for drug delivery researches.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 10974080, 91027040, 11104192, 21264016, 11265015).
    [1]

    Holthuis J C M, Levine T P 2005 Nat. Rev. Mol. Cell Biol. 6 209

    [2]

    Liu J, Jiang X, Ashley C, Brinker C J 2009 JACS 131 7567

    [3]

    Zuhorn I S, Engberts J B F N, Hoekstra D 2007 Eur. Biophys. J. 36 349

    [4]

    Pantazatos D P, Pantazatos S P, MacDonald R C 2003 J. Membr. Biol. 194 129

    [5]

    Saeki D, Sugiura S, Baba T, Kanamori T, Sato S, Mukataka S, Ichikawa S 2008 J. Colloid Interface Sci. 320 611

    [6]

    Reinl H M, Bayerl T M 1994 Biochemistry 33 14091

    [7]

    Jones J D, Thompson T E 1989 Biochemistry 28 129

    [8]

    Stamatatos L, Leventis R, Zuckermann M J, Silvius J R 1988 Biochemistry 27 3917

    [9]

    Zhu T, Jiang Z, Ma Y 2012 Colloids Surf. B 97 155

    [10]

    MarchiArtzner V, Jullien L, Belloni L, Raison D, Lacombe L, Lehn J M 1996 J. Phys. Chem. 100 13844

    [11]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755

    [12]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681

    [13]

    Zhu T, Xu F, Yuan B, Ren C, Jiang Z, Ma Y 2012 Colloids Surf. B 89 228

    [14]

    Sauerbrey G 1959 Z. Angew. Phys. 155 206

    [15]

    Richter R P, Brisson A R 2005 Biophys. J. 88 3422

    [16]

    Wikstrom A, Svedhem S, Sivignon M, Kasemo B 2008 J. Phys. Chem. B 112 14069

    [17]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443

    [18]

    Lei G H, MacDonald R C 2003 Biophys. J. 85 1585

    [19]

    Wu E S, Jacobson K, Papahadjopoulos D 1977 Biochemistry 16 3936

    [20]

    Sapuri A R, Baksh M M, Groves J T 2003 Langmuir 19 1606

    [21]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [22]

    Li J B, Zhang Y, Yan L L 2001 Angew. Chem. Int. Edit. 40 891

    [23]

    An Z H, Tao C, Lu G, Mohwald H, Zheng S P, Cui Y, Li J B 2005 Chem. Mater. 17 2514

  • [1]

    Holthuis J C M, Levine T P 2005 Nat. Rev. Mol. Cell Biol. 6 209

    [2]

    Liu J, Jiang X, Ashley C, Brinker C J 2009 JACS 131 7567

    [3]

    Zuhorn I S, Engberts J B F N, Hoekstra D 2007 Eur. Biophys. J. 36 349

    [4]

    Pantazatos D P, Pantazatos S P, MacDonald R C 2003 J. Membr. Biol. 194 129

    [5]

    Saeki D, Sugiura S, Baba T, Kanamori T, Sato S, Mukataka S, Ichikawa S 2008 J. Colloid Interface Sci. 320 611

    [6]

    Reinl H M, Bayerl T M 1994 Biochemistry 33 14091

    [7]

    Jones J D, Thompson T E 1989 Biochemistry 28 129

    [8]

    Stamatatos L, Leventis R, Zuckermann M J, Silvius J R 1988 Biochemistry 27 3917

    [9]

    Zhu T, Jiang Z, Ma Y 2012 Colloids Surf. B 97 155

    [10]

    MarchiArtzner V, Jullien L, Belloni L, Raison D, Lacombe L, Lehn J M 1996 J. Phys. Chem. 100 13844

    [11]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755

    [12]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681

    [13]

    Zhu T, Xu F, Yuan B, Ren C, Jiang Z, Ma Y 2012 Colloids Surf. B 89 228

    [14]

    Sauerbrey G 1959 Z. Angew. Phys. 155 206

    [15]

    Richter R P, Brisson A R 2005 Biophys. J. 88 3422

    [16]

    Wikstrom A, Svedhem S, Sivignon M, Kasemo B 2008 J. Phys. Chem. B 112 14069

    [17]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443

    [18]

    Lei G H, MacDonald R C 2003 Biophys. J. 85 1585

    [19]

    Wu E S, Jacobson K, Papahadjopoulos D 1977 Biochemistry 16 3936

    [20]

    Sapuri A R, Baksh M M, Groves J T 2003 Langmuir 19 1606

    [21]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [22]

    Li J B, Zhang Y, Yan L L 2001 Angew. Chem. Int. Edit. 40 891

    [23]

    An Z H, Tao C, Lu G, Mohwald H, Zheng S P, Cui Y, Li J B 2005 Chem. Mater. 17 2514

  • [1] Wang Li-Li, Peng Jian-Xiang, Jing Fu-Qian, Li Da-Hong. Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper and tungsten under shock compression. Acta Physica Sinica, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
    [2] Zhao Xue-Yan, Yuan Ping, Wang Jie, Shen Xiao-Zhi, Guo Yi-Xiao, Qiao Hong-Zhen. Theoretical study on the rule of plasma temperature decay in the process of lightning dissipation. Acta Physica Sinica, 2009, 58(5): 3243-3247. doi: 10.7498/aps.58.3243
    [3] Meng Wei-Min, Li Rong-Hua, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen, Peng Ying-Quan. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [4] Huang Ping, Gong Zhong-Liang, Wang Ya-Zhen. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [5] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [6] Yang Yin-Tang, Han Ru, Fan Xiao-Ya. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [7] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [8] Lu Xing-Zhong, Chen Guo-Qing, Wu Ya-Min. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [9] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [10] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
  • Citation:
Metrics
  • Abstract views:  950
  • PDF Downloads:  507
  • Cited By: 0
Publishing process
  • Received Date:  29 February 2012
  • Accepted Date:  06 August 2012
  • Published Online:  05 January 2013

Lipid exhange between membranes: effects of temperature and ionic strength

  • 1. School of Electronics and Information, Yili Normal University, Yining 835000, China;
  • 2. College of Physics, Nanjing University, Nanjing 210093, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 10974080, 91027040, 11104192, 21264016, 11265015).

Abstract: Transmembrane lipid exchange is critical to membrane function and pharmaceutical application. The exchange process is not fully understood and it is explored by quartz crystal microbalance with dissipation monitor method in this paper. It is found that the vesicle deformation discrepancy is not significant for the supported-lipid-bilayer-attached vesicles under different thermal and ionic strength conditions. And hence the total intermembrane contact area is determined by the vesicle adsorption amount. The maximum total intermembrane contact area decreases with the increase of temperature and the decrease of ionic strength. The changes of the vesicle adsorption rate and the transmembrane lipid exchange rate induced by temperature and ionic strength are elucidated to understand the observation above. The study helps explain some physiological phenomena and provides some guidelines for drug delivery researches.

Reference (23)

Catalog

    /

    返回文章
    返回