搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

被动遥测矿井CO气体温度及浓度的正演研究

唐远河 王淑华 崔进 徐颖 梅屹峰 李存霞

引用本文:
Citation:

被动遥测矿井CO气体温度及浓度的正演研究

唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞

Study on the forward of mashgas CO temperature and concentration by the remote passive measurement

Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia
PDF
导出引用
  • 为减少矿井瓦斯气体爆炸后的二次救援伤亡,我们设计了一套成像干涉光学系统,可以便携实时被动遥感探测瓦斯气体CO的温度和浓度. 该系统根据分子转动谱线测温和气体辐射光强与分子数密度的函数关系测浓度. 本文研究该系统的正演模式,依次对目标气体的辐射模型、气体的传输模型、滤波函数模型和CCD成像探测器模型等4种子模型进行研究后,得到正演公式. 根据所给相关参数和MATLAB编程,得到CO气体R11-R16的6条谱线的成像干涉正演图像. 曝光时间300 s时,正演图像最大信噪比为268,CO成像干涉图信号强度的电子计数最大值为1.5105,大于所选CCD探测器的400个电子计数暗噪声,而小于其满井电荷量1106. 正演结果表明该光学系统可达探测要求. 该系统探测CO气体的温度和浓度精度分别可达2 K和0.1%.
    In order to reduce the second rescue injuries and deaths after the mashgas exploding in the mine, a portable imaging interferometer system is designed to detect CO temperature and concentration by the passive and remote measurement. The CO temperature and concentration are detected according to the rotational spectral line of CO gas molecule and the linear relationship between the radiation intensity of gas molecule and the molecule number density, respectively. The optical system is designed, and then its forward is studied in this work. The forward expression is obtained after studying the following four seed models of the optical system: the radiation model of target gas, where CO six emission spectral lines R11-16 are selected from HITRAN08 database; the mine CO gas transmission model in which the absorptions by the water vapor and CO2 molecule, and absorption and scattering by the mine aerosol are calculated by the relevant rules; the filter function model, in which the matched parameters of the band width of 0.5 nm and max transmittance of 0.23 for CO temperature are measured by the method of rotational line of R11-16, and the model of imaging detector CCD in which the infrared CCD of pixel 320320 and the max quantum efficiency of 0.75 are to be used in the optical system. According to the given parameters and MATLAB programming, the forward imaging interference results of CO differentiable six spectrum of R11-16 are obtained. The forward max noise-signal ratio is 268 when the exposure time is 300 s. The max electric count is 1.5105 that is larger than the selected CCD dark noise of 400 e but less than the CCD full charge quantity of 1106 e. The forward result clearly indicates that the optical system can meet the initial design demand. The accuracies of CO temperature and concentration measured by this optical system can reach 2 K and 0.1%, respectively. This portable system can be used to detect not only the mine CO, but also other gases like the pipe smoke, bomb exploding gas, etc. in which the filter and CCD need to be changed.
      通信作者: 唐远河, ltp1801@163.com
    • 基金项目: 国家自然科学基金(批准号:61308006)、陕西自然科学基金(批准号:2016JM1011)和西安理工大学特色项目(批准号:2015TS012)资助的课题.
      Corresponding author: Tang Yuan-He, ltp1801@163.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant No. 61308006), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM1011), and Characteristic research of Xi'an University of Technology, China (Grant No. 2015TS012).
    [1]

    Chen D, Liu W Q, Zhang Y J 2006 Chin. Lasers 33 1552 (in Chinese) [陈东, 刘文清, 张玉钧 2006 中国激光 33 1552]

    [2]

    Zhang H L, He W X, Yu Y B 2014 Instrum. Tech. Sens. 1 41 (in Chinese) [张红丽, 和卫星, 郁永斌 2014 仪表技术与传感器 1 41]

    [3]

    Wang Z R, Zhou B, Wang S S, Yang S N 2011 Acta Phys. Sin. 60 060703 (in Chinese) [王焯如, 周斌, 王珊珊, 杨素娜 2011 物理学报 60 060703]

    [4]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [5]

    Brassington D J 1982 J. Phys. D: Appl. Phys. 15 219

    [6]

    Jasinski P 2006 Mater. Sci. Poland 24 269

    [7]

    Stewart G, Culshaw B, Johnstone W 2003 Environ. Qual. Manage. 14 181

    [8]

    Huijsing J H, Makinwa K A A, Verhoeven H J 1994 Sens. Actuators A: Physical 43 276

    [9]

    Chu J H 1992 Semiconductor Optoelectronics 13 170 (in Chinese) [储建华 1992 半导体光电 13 170]

    [10]

    Xu Z J, Chen Y Z, Jiang D S, Song C S, Li H C, Song X F, Ye Y Y 1980 Acta Phys. Sin. 29 867 (in Chinese) [许振嘉, 陈玉璋, 江德生, 宋春英, 李贺成, 宋祥芳, 叶亦英 1980 物理学报 29 867]

    [11]

    Safitri A, Gao X D, Mannam M S 2011 J. Loss. Prevent Proc. 24 38

    [12]

    Tang Y H, Duan X D, Gao H Y, Qu O Y, Jia Q J, Cao X G, Wei S N, Yang R 2014 Appl. Opt. 53 2273

    [13]

    Gao H Y, Tang Y H, Duan X D, Liu H C, Cao X G, Jia Q J, Qu O Y, Wu Y 2013 Appl. Opt. 52 8650

    [14]

    ShiX G, Wang B, Yang J H 2005 Infrared System (Beijing: Weapon Industry Press) p85 (in Chinese) [石晓光, 王彬, 杨进华 2005 红外系统 (北京: 兵器工业出版社) 第85 页]

    [15]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley Sons Inc Press) p436

    [16]

    Mohlenhoff B, Romeo M, Diem M, Wood B R 2005 Biophys. J. 88 3635

    [17]

    Shepherd G G 2002 Spectral Imaging of the Atmesphere (London: Academic Press) pp174-181

    [18]

    Shepherd G G, Thuillier G, Gault W 1993 Geophys. Res. 98 10725

  • [1]

    Chen D, Liu W Q, Zhang Y J 2006 Chin. Lasers 33 1552 (in Chinese) [陈东, 刘文清, 张玉钧 2006 中国激光 33 1552]

    [2]

    Zhang H L, He W X, Yu Y B 2014 Instrum. Tech. Sens. 1 41 (in Chinese) [张红丽, 和卫星, 郁永斌 2014 仪表技术与传感器 1 41]

    [3]

    Wang Z R, Zhou B, Wang S S, Yang S N 2011 Acta Phys. Sin. 60 060703 (in Chinese) [王焯如, 周斌, 王珊珊, 杨素娜 2011 物理学报 60 060703]

    [4]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [5]

    Brassington D J 1982 J. Phys. D: Appl. Phys. 15 219

    [6]

    Jasinski P 2006 Mater. Sci. Poland 24 269

    [7]

    Stewart G, Culshaw B, Johnstone W 2003 Environ. Qual. Manage. 14 181

    [8]

    Huijsing J H, Makinwa K A A, Verhoeven H J 1994 Sens. Actuators A: Physical 43 276

    [9]

    Chu J H 1992 Semiconductor Optoelectronics 13 170 (in Chinese) [储建华 1992 半导体光电 13 170]

    [10]

    Xu Z J, Chen Y Z, Jiang D S, Song C S, Li H C, Song X F, Ye Y Y 1980 Acta Phys. Sin. 29 867 (in Chinese) [许振嘉, 陈玉璋, 江德生, 宋春英, 李贺成, 宋祥芳, 叶亦英 1980 物理学报 29 867]

    [11]

    Safitri A, Gao X D, Mannam M S 2011 J. Loss. Prevent Proc. 24 38

    [12]

    Tang Y H, Duan X D, Gao H Y, Qu O Y, Jia Q J, Cao X G, Wei S N, Yang R 2014 Appl. Opt. 53 2273

    [13]

    Gao H Y, Tang Y H, Duan X D, Liu H C, Cao X G, Jia Q J, Qu O Y, Wu Y 2013 Appl. Opt. 52 8650

    [14]

    ShiX G, Wang B, Yang J H 2005 Infrared System (Beijing: Weapon Industry Press) p85 (in Chinese) [石晓光, 王彬, 杨进华 2005 红外系统 (北京: 兵器工业出版社) 第85 页]

    [15]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley Sons Inc Press) p436

    [16]

    Mohlenhoff B, Romeo M, Diem M, Wood B R 2005 Biophys. J. 88 3635

    [17]

    Shepherd G G 2002 Spectral Imaging of the Atmesphere (London: Academic Press) pp174-181

    [18]

    Shepherd G G, Thuillier G, Gault W 1993 Geophys. Res. 98 10725

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [4] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [10] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [11] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [12] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [13] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [16] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [17] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [18] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [19] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] 彭建祥, 经福谦, 王礼立, 李大红. 冲击压缩下铝、铜、钨的剪切模量和屈服强度与压力和温度的相关性. 物理学报, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
计量
  • 文章访问数:  4531
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-05-18
  • 刊出日期:  2016-09-05

/

返回文章
返回