Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on relaxation loss mechanism of CaCu3Ti4O12 ceramic

Wang Hui Lin Chun-Jiang Li Sheng-Tao Li Jian-Ying

Investigation on relaxation loss mechanism of CaCu3Ti4O12 ceramic

Wang Hui, Lin Chun-Jiang, Li Sheng-Tao, Li Jian-Ying
PDF
Get Citation
  • The dielectric loss of the CaCu3Ti4O12 ceramic is high, and the mechanism of the loss is not clear, which restricts its application. The CaCu3Ti4O12 ceramic samples are synthesised by solid state reaction method and coprecipitation method. The electronic relaxation of deep bulk traps at the depletion layer edge, carrier relaxation and the dielectric loss of CaCu3Ti4O12 ceramic are investigated. Both perfect double Schottky barrier and low impurity density can reduce the DC conductivity, thus reducing the low-frequency dielectric loss. High-frequency dielectric loss is controlled by deep bulk trap density, especially in the one whose activation energy is 0.12 eV. At room temperature, when the frequency is 1 kHz, the dielectric constant and loss of CaCu3Ti4O12 ceramic prepared by coprecipitation method are 1.4× 104 and 0.037, indicating a good improvement.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972118, 50977071, 51177121).
    [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [3]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [4]

    Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321

    [5]

    Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911

    [6]

    Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009

    [7]

    Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905

    [8]

    Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137

    [9]

    Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245

    [10]

    Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151

    [11]

    Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111

    [12]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [13]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [14]

    Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902

    [15]

    Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101

    [16]

    Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903

    [17]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [18]

    Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]

    [19]

    Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104

    [20]

    Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774

    [21]

    Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131

    [22]

    He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112

    [23]

    He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103

    [24]

    Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266

    [25]

    Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]

    [26]

    Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 物理学报 58 6376]

    [27]

    Jonscher A K 1975 Nature 256 566

    [28]

    Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485

  • [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [3]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [4]

    Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321

    [5]

    Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911

    [6]

    Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009

    [7]

    Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905

    [8]

    Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137

    [9]

    Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245

    [10]

    Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151

    [11]

    Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111

    [12]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [13]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [14]

    Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902

    [15]

    Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101

    [16]

    Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903

    [17]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [18]

    Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]

    [19]

    Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104

    [20]

    Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774

    [21]

    Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131

    [22]

    He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112

    [23]

    He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103

    [24]

    Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266

    [25]

    Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]

    [26]

    Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 物理学报 58 6376]

    [27]

    Jonscher A K 1975 Nature 256 566

    [28]

    Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [3] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [4] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] Zhang Zheng-Wei, Wang Gui-Lin, Zhang Shao-Long, Sun Qi-Zhi, Liu Wei, Zhao Xiao-Ming, Jia Yue-Song, Xie Wei-Ping. Application of electrical action to design and analysis of magnetically driven solid liner implosion. Acta Physica Sinica, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [6] The Influence of the magentic annealing temperature on the microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191942
    [7] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • Citation:
Metrics
  • Abstract views:  2327
  • PDF Downloads:  488
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2012
  • Accepted Date:  13 December 2012
  • Published Online:  20 April 2013

Investigation on relaxation loss mechanism of CaCu3Ti4O12 ceramic

  • 1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50972118, 50977071, 51177121).

Abstract: The dielectric loss of the CaCu3Ti4O12 ceramic is high, and the mechanism of the loss is not clear, which restricts its application. The CaCu3Ti4O12 ceramic samples are synthesised by solid state reaction method and coprecipitation method. The electronic relaxation of deep bulk traps at the depletion layer edge, carrier relaxation and the dielectric loss of CaCu3Ti4O12 ceramic are investigated. Both perfect double Schottky barrier and low impurity density can reduce the DC conductivity, thus reducing the low-frequency dielectric loss. High-frequency dielectric loss is controlled by deep bulk trap density, especially in the one whose activation energy is 0.12 eV. At room temperature, when the frequency is 1 kHz, the dielectric constant and loss of CaCu3Ti4O12 ceramic prepared by coprecipitation method are 1.4× 104 and 0.037, indicating a good improvement.

Reference (28)

Catalog

    /

    返回文章
    返回