Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of total ionizing dose on narrow-channel SOI NMOSFETs

Ning Bing-Xu Hu Zhi-Yuan Zhang Zheng-Xuan Bi Da-Wei Huang Hui-Xiang Dai Ruo-Fan Zhang Yan-Wei Zou Shi-Chang

Effects of total ionizing dose on narrow-channel SOI NMOSFETs

Ning Bing-Xu, Hu Zhi-Yuan, Zhang Zheng-Xuan, Bi Da-Wei, Huang Hui-Xiang, Dai Ruo-Fan, Zhang Yan-Wei, Zou Shi-Chang
PDF
Get Citation
  • The effects of total ionizing dose on narrow-channel N-type metal-oxide-semiconductor field-effect-transistors (NMOSFETs) in a 130 nm partially depleted silicon-on-insulator (SOI) technology are presented. The charge conservation principle is utilized to analyze the radiation-induced narrow-channel effect (RINCE). In addition, it is found for the first time, as for as we know that for the narrow-channel NMOSFETs operated in the linear region, the radiation-induced positive charges trapped in the shallow trench isolation can increase the probability of electron-electron collisions and surface roughness scattering, resulting in the degradation of the carrier mobility and transconductance of the main transistor. Finally, the RINCE as well as the degradation of the carrier mobility has been verified by our three-dimensional device simulation; and good agreement between the simulation and experimental results is obtained.
    [1]

    Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and applications (Beijing: Publishing House of Science) p3 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用 (科学出版社) 第3页]

    [2]

    Zhou X J, Li L L, Zhou Y, Luo J, Yu Z G 2012 Acta Phys. Sin. 61 206102 (in Chinese) [周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光 2012 物理学报 61 206102]

    [3]

    Liu S T, Anthony D, Heikkila W, Hughes H 2004 IEEE Trans. Nucl. Sci. 51 3475

    [4]

    Galloway K F, Wilson C L, Witte L C 1985 IEEE Trans. Nucl. Sci. 32 4461

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明 2011 物理学报 60 116103]

    [7]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Bi D W, Chen M 2012 Acta Phys. Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明 2012 物理学报 61 116103]

    [8]

    Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273

    [9]

    Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295

    [10]

    Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175

    [11]

    Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817

    [12]

    Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189

    [13]

    Cavrois V F, Colladant T, Paillet P, Leray J L, Musseau O, Schwank J R, Shaneyfelt M R 2000 IEEE Trans. Nucl. Sci. 47 2183

    [14]

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702 (in Chinese) [卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃 2012 物理学报 61 220702]

    [15]

    Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413

    [16]

    Saks N S, Ancona M G, Rendell R W 2002 Appl. Phys. Lett. 80 3219

    [17]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE Trans. Nucl. Sci. 31 1497

    [18]

    Rowlands D D, Dimitrijev S 1991 Microelectron Conf. 1911 p130

    [19]

    ATLAS version 5.6.0.R, SILVACO

  • [1]

    Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and applications (Beijing: Publishing House of Science) p3 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用 (科学出版社) 第3页]

    [2]

    Zhou X J, Li L L, Zhou Y, Luo J, Yu Z G 2012 Acta Phys. Sin. 61 206102 (in Chinese) [周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光 2012 物理学报 61 206102]

    [3]

    Liu S T, Anthony D, Heikkila W, Hughes H 2004 IEEE Trans. Nucl. Sci. 51 3475

    [4]

    Galloway K F, Wilson C L, Witte L C 1985 IEEE Trans. Nucl. Sci. 32 4461

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明 2011 物理学报 60 116103]

    [7]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Bi D W, Chen M 2012 Acta Phys. Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明 2012 物理学报 61 116103]

    [8]

    Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273

    [9]

    Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295

    [10]

    Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175

    [11]

    Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817

    [12]

    Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189

    [13]

    Cavrois V F, Colladant T, Paillet P, Leray J L, Musseau O, Schwank J R, Shaneyfelt M R 2000 IEEE Trans. Nucl. Sci. 47 2183

    [14]

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702 (in Chinese) [卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃 2012 物理学报 61 220702]

    [15]

    Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413

    [16]

    Saks N S, Ancona M G, Rendell R W 2002 Appl. Phys. Lett. 80 3219

    [17]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE Trans. Nucl. Sci. 31 1497

    [18]

    Rowlands D D, Dimitrijev S 1991 Microelectron Conf. 1911 p130

    [19]

    ATLAS version 5.6.0.R, SILVACO

  • [1] Cao Lei, Liu Hong-Xia. Study of the SOI MOSFET characteristics of high-k gate dielectric with quantum effect. Acta Physica Sinica, 2012, 61(24): 247303. doi: 10.7498/aps.61.247303
    [2] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [3] Zhang He-Ming, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi, Cui Xiao-Ying. Study on threshold voltage model of strained SiGe quantum well channel SOI PMOSFET. Acta Physica Sinica, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [4] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [5] Zhang Bai-Qiang, Zheng Zhong-Shan, Yu Fang, Ning Jin, Tang Hai-Ma, Yang Zhi-An. Effect of co-implantation of nitrogen and fluorine on the fixed positive charge density of the buried oxide layer in SIMOX SOI materials. Acta Physica Sinica, 2013, 62(11): 117303. doi: 10.7498/aps.62.117303
    [6] Zhang En-Xia, Tang Hai-Ma, Zheng Zhong-Shan, Yu Fang, Li Ning, Wang Ning-Juan, Li Guo-Hua, Ma Hong-Zhi. Influence of high-dose nitrogen implantation on the positive charge density of the buried oxide of silicon-on-insulator wafers. Acta Physica Sinica, 2011, 60(5): 056104. doi: 10.7498/aps.60.056104
    [7] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [8] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [9] Cao Yang, Xi Kai, Xu Yan-Nan, Li Mei, Li Bo, Bi Jin-Shun, Liu Ming. Total ionizing dose effects of γ and X-rays on 55 nm silicon-oxide-nitride-oxide-silicon single flash memory cell. Acta Physica Sinica, 2019, 68(3): 038501. doi: 10.7498/aps.68.20181661
    [10] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
  • Citation:
Metrics
  • Abstract views:  958
  • PDF Downloads:  792
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2012
  • Accepted Date:  29 October 2012
  • Published Online:  05 April 2013

Effects of total ionizing dose on narrow-channel SOI NMOSFETs

  • 1. The State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, the Chinese Academy of Sciences, Shanghai 200050, China;
  • 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Abstract: The effects of total ionizing dose on narrow-channel N-type metal-oxide-semiconductor field-effect-transistors (NMOSFETs) in a 130 nm partially depleted silicon-on-insulator (SOI) technology are presented. The charge conservation principle is utilized to analyze the radiation-induced narrow-channel effect (RINCE). In addition, it is found for the first time, as for as we know that for the narrow-channel NMOSFETs operated in the linear region, the radiation-induced positive charges trapped in the shallow trench isolation can increase the probability of electron-electron collisions and surface roughness scattering, resulting in the degradation of the carrier mobility and transconductance of the main transistor. Finally, the RINCE as well as the degradation of the carrier mobility has been verified by our three-dimensional device simulation; and good agreement between the simulation and experimental results is obtained.

Reference (19)

Catalog

    /

    返回文章
    返回