Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide

Cheng Yang Yao Bai-Cheng Wu Yu Wang Ze-Gao Gong Yuan Rao Yun-Jiang

Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide

Cheng Yang, Yao Bai-Cheng, Wu Yu, Wang Ze-Gao, Gong Yuan, Rao Yun-Jiang
PDF
Get Citation
  • The applications of graphene-based optical waveguide devices have been demonstrated to be one of the important directions of development for a new generation of photonic devices, and the research of graphene-based optical fiber and integrated photonic devices has attracted a great deal of attention at home and abroad. In this paper, a graphene planar optical waveguide is proposed which could transmit light by the evanescent field coupling with a microfiber. Finite element method is adopted to simulate the optical field intensity distribution and phase features of light propagating along graphene planar optical waveguide, and an experiment is performed to verify these features. Experimental results show that the transmission distribution and phases of the evanescent field are modulated by graphene obviously, it could effectively gather and transmit the high-order modes, exhibiting denser equal-phase faces on unit propagating length. In this work, we propose a new method in which the microfiber is adopted to investigate the transmission phase feature of graphene by evanescent wave coupling, which could be used as references for the design and application of graphene-based optical devices, such as modulator, filter, laser and sensor.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61107072, 61107073), and the Major Program of the National Natural Science Foundation of China (Grant No. 61290312).
    [1]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [2]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [3]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photonics 6 749

    [4]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [5]

    Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lim Y X, Wang Y, Tang D Y, Loh K P 2011 Nature Photonics 5 411

    [6]

    Feng D J, Han W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [7]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110

    [8]

    Yao B C, Wu Y, Cheng Y, Liu X P, Gong Y, Rao Y J 2012 Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors Beijing, China, October 15–19, 2012 p8421CD

    [9]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 225 057701

    [10]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [11]

    Vakil A, Engheta N 2011 Science 332 1291

    [12]

    Yao B C, Wu Y, Jia L, Rao Y J, Gong Y, Jiang C Y 2012 J. Opt. Am. B 29 891

    [13]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [14]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [15]

    Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R 2011 ACS Nano 5 7149

    [16]

    He X Y, Liu Z B, Wang D N, Yang M W, Hu T Y, Tian J G 2013 IEEE Photonic. Tech. L 25 14

  • [1]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [2]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [3]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photonics 6 749

    [4]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [5]

    Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lim Y X, Wang Y, Tang D Y, Loh K P 2011 Nature Photonics 5 411

    [6]

    Feng D J, Han W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [7]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110

    [8]

    Yao B C, Wu Y, Cheng Y, Liu X P, Gong Y, Rao Y J 2012 Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors Beijing, China, October 15–19, 2012 p8421CD

    [9]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 225 057701

    [10]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [11]

    Vakil A, Engheta N 2011 Science 332 1291

    [12]

    Yao B C, Wu Y, Jia L, Rao Y J, Gong Y, Jiang C Y 2012 J. Opt. Am. B 29 891

    [13]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [14]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [15]

    Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R 2011 ACS Nano 5 7149

    [16]

    He X Y, Liu Z B, Wang D N, Yang M W, Hu T Y, Tian J G 2013 IEEE Photonic. Tech. L 25 14

  • [1] Li Ying, Hu Yan-Jun. Laser wavelength influence on capture and delivery of polystyrene microspheres using nanofibers. Acta Physica Sinica, 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [2] Chen Long, He Sai-Ling, Shen Lin-Fang. Analysis for the propagation of evanescent waves and the photo tunneling effect in a multi-layered structure containing materials with negative refractive index. Acta Physica Sinica, 2003, 52(10): 2386-2392. doi: 10.7498/aps.52.2386
    [3] Cao Jue-Neng, Guo Qi. Properties of spatial optical solitons to different degrees of nonlocality. Acta Physica Sinica, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [4] Yan Sen-Lin. Theoretical studies on optical fiber secure communication using chaotic phase encoding. Acta Physica Sinica, 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [5] Shi Zhan, Chen Lai-Zhu, Tong Yong-Shuai, Zheng Zhi-Bin, Yang Shui-Yuan, Wang Cui-Ping, Liu Xing-Jun. Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Physica Sinica, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [6] Qi Zhi-Ming, Liang Wen-Yao. Reflection phase characteristics and their applications based on one-dimensional coupled-cavity photonic crystals with gradually changed thickness ofsurface layer. Acta Physica Sinica, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [7] Yan Sen-Lin. Studies on chaotic modulation performance and internal phase shifting key encoding in injection semiconductor lasers. Acta Physica Sinica, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [8] Xu Min, Zhang Yue-Heng, Shen Wen-Zhong. Reflectivity and phase shift of semiconductor far-infrared mirrors. Acta Physica Sinica, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [9] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [10] Chen Xiao-Yi, Liu Man, Li Hai-Xia, Zhang Mei-Na, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu. Experimental study of the evolution of phase vortices in the speckle fields generated by weak scattering screens in the extremely deep Fresnel diffraction region. Acta Physica Sinica, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
  • Citation:
Metrics
  • Abstract views:  821
  • PDF Downloads:  1926
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2013
  • Accepted Date:  15 August 2013
  • Published Online:  05 December 2013

Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide

  • 1. Key Laboratory of Optical Fiber Sensing and Communication, Ministry of Education, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
  • 2. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61107072, 61107073), and the Major Program of the National Natural Science Foundation of China (Grant No. 61290312).

Abstract: The applications of graphene-based optical waveguide devices have been demonstrated to be one of the important directions of development for a new generation of photonic devices, and the research of graphene-based optical fiber and integrated photonic devices has attracted a great deal of attention at home and abroad. In this paper, a graphene planar optical waveguide is proposed which could transmit light by the evanescent field coupling with a microfiber. Finite element method is adopted to simulate the optical field intensity distribution and phase features of light propagating along graphene planar optical waveguide, and an experiment is performed to verify these features. Experimental results show that the transmission distribution and phases of the evanescent field are modulated by graphene obviously, it could effectively gather and transmit the high-order modes, exhibiting denser equal-phase faces on unit propagating length. In this work, we propose a new method in which the microfiber is adopted to investigate the transmission phase feature of graphene by evanescent wave coupling, which could be used as references for the design and application of graphene-based optical devices, such as modulator, filter, laser and sensor.

Reference (16)

Catalog

    /

    返回文章
    返回