Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and optical property characterization of quantum-dot-array diffraction grating with single order diffraction based on focused ion beam

Huang Cheng-Long Zhang Ji-Cheng Diao Kai-Di Zeng Yong Yi Yong Cao Lei-Feng Wang Hong-Bin

Fabrication and optical property characterization of quantum-dot-array diffraction grating with single order diffraction based on focused ion beam

Huang Cheng-Long, Zhang Ji-Cheng, Diao Kai-Di, Zeng Yong, Yi Yong, Cao Lei-Feng, Wang Hong-Bin
PDF
Get Citation
  • Quantum-dot-array diffraction grating(QDADG), with an area of 200 μm×200 μm, a line density of 500 line/mm, an aperture size of 800 nm and a gold absorber of 500 nm thick, is successfully fabricated by focused ion beams. The diffraction properties and relative diffraction efficiencies of QDADG are measured at different transfer distance for 442 nm laser. It is shown that the high-order diffraction is removed from the spectra with only the ±1 and 0 order diffraction lines reserved. Moreover, in accordance with the calculated values obtained using the grating equation, variations of space between the 1st order and the 0th order increase gradually with the increase of transfer distance.
    • Funds: Project supported by the Open Foundation of Key Laboratory for Nonmetal Composites and Functional Materials of Sichuan Province, China (Grant No. 11zxfk19).
    [1]

    Weisberg A, Craparo J, Saro R D, Pawluczyk R 2010 Appl. Opt. 49 200

    [2]

    Zou B, Chiang K S 2013 Journal of Lightwave Technology 31 2223

    [3]

    Mariën G, Jovanovi N, Cvetojevi N, Williams R, Haynes R, Lawrence J, Parker Q, Withford M J 2012 Astronomy & Astrophysics 421 3641

    [4]

    Kantsyrev V L, Baure B S, Shlyaptseva A S, Fedin D A, Hansen S, Presura R, Chamberlain D, Ouart N D, Jones A, Lebeau H 2000 SPIE 4138 203

    [5]

    Cao L F China Patent CN200410081499 [2005-07-27] (in Chinese) [曹磊峰 中国: CN200410081499 2005-07-27]

    [6]

    Cao L F, Forster E, Fuhrmann A, Wang C K, Kuang L Y 2007 Appl. Phys. Lett. 90 053501

    [7]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1173

    [8]

    Gorelick S, Guzenko V A, Vila-Comamala J, David C 2010 Nanotechnology 21 295303

    [9]

    Luo C C, Li Y G, Susumu S 2012 Optics & Laser Technology 44 1649

    [10]

    Kong L Q, Zhang C J, Huang S L, Zhu X F 2012 Acta Phys. Sin. 61 036102 (in Chinese) [孔令琦, 张春婧, 黄胜利, 朱贤方 2012 物理学报 61 036102]

    [11]

    Sun L Y, Gao Z Y, Zou D S, Zhang L, Ma L, Tian L, Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese) [孙丽媛, 高志远, 邹德恕, 张露, 马莉, 田亮, 沈光地 2012 物理学报 61 206801]

    [12]

    Zhao M, Zhu X L, Chen B Q, Xie C Q, Liu M, Cao L F 2007 Optical Engineering 475 058001

    [13]

    Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q, Zheng J 2011 Opt. Lett. 36 3954

    [14]

    Feng Y J, Cheng Q H, Wu P H 1995 Chin. Phys. 4 301

    [15]

    Zhang H B, Feng R J, Katsumi U 2003 Chin. Phys. Lett. 20 2011

    [16]

    Giannuzzi L A, Stevie F A 2004 Introduction to focused ion beams: instrumentation, theory, techniques and practice (New York: Springer Science+Business Media) pp1-12

    [17]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, Li H L, 唐为华 2005 物理学报 54 0582]

    [18]

    Gu W Q, Ma X G, Li W P 2006 Focused ion beam micro-nano fabrication technology (Beijing: Beijing Industry University Press) pp1–87 (in Chinese) [顾文琪, 马向国, 李文萍 2006 聚焦离子束微纳加工技术 (北京: 北京工业大学出版社) 第1–87页]

    [19]

    Wei L, Cao L F, Fan W, Zang H P, Gao Y L, Zhu X L, Xie C Q, Gu Y Q, Zhang B H, Wang X F 2011 High Power Laser and Particle Beams 23 387 (in Chinese) [魏来, 曹磊峰, 范伟, 臧华平, 高宇林, 朱效立, 谢长青, 谷渝秋, 张保汉, 王晓方 2011 强激光与粒子束 23 387]

  • [1]

    Weisberg A, Craparo J, Saro R D, Pawluczyk R 2010 Appl. Opt. 49 200

    [2]

    Zou B, Chiang K S 2013 Journal of Lightwave Technology 31 2223

    [3]

    Mariën G, Jovanovi N, Cvetojevi N, Williams R, Haynes R, Lawrence J, Parker Q, Withford M J 2012 Astronomy & Astrophysics 421 3641

    [4]

    Kantsyrev V L, Baure B S, Shlyaptseva A S, Fedin D A, Hansen S, Presura R, Chamberlain D, Ouart N D, Jones A, Lebeau H 2000 SPIE 4138 203

    [5]

    Cao L F China Patent CN200410081499 [2005-07-27] (in Chinese) [曹磊峰 中国: CN200410081499 2005-07-27]

    [6]

    Cao L F, Forster E, Fuhrmann A, Wang C K, Kuang L Y 2007 Appl. Phys. Lett. 90 053501

    [7]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1173

    [8]

    Gorelick S, Guzenko V A, Vila-Comamala J, David C 2010 Nanotechnology 21 295303

    [9]

    Luo C C, Li Y G, Susumu S 2012 Optics & Laser Technology 44 1649

    [10]

    Kong L Q, Zhang C J, Huang S L, Zhu X F 2012 Acta Phys. Sin. 61 036102 (in Chinese) [孔令琦, 张春婧, 黄胜利, 朱贤方 2012 物理学报 61 036102]

    [11]

    Sun L Y, Gao Z Y, Zou D S, Zhang L, Ma L, Tian L, Shen G D 2012 Acta Phys. Sin. 61 206801 (in Chinese) [孙丽媛, 高志远, 邹德恕, 张露, 马莉, 田亮, 沈光地 2012 物理学报 61 206801]

    [12]

    Zhao M, Zhu X L, Chen B Q, Xie C Q, Liu M, Cao L F 2007 Optical Engineering 475 058001

    [13]

    Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q, Zheng J 2011 Opt. Lett. 36 3954

    [14]

    Feng Y J, Cheng Q H, Wu P H 1995 Chin. Phys. 4 301

    [15]

    Zhang H B, Feng R J, Katsumi U 2003 Chin. Phys. Lett. 20 2011

    [16]

    Giannuzzi L A, Stevie F A 2004 Introduction to focused ion beams: instrumentation, theory, techniques and practice (New York: Springer Science+Business Media) pp1-12

    [17]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, Li H L, 唐为华 2005 物理学报 54 0582]

    [18]

    Gu W Q, Ma X G, Li W P 2006 Focused ion beam micro-nano fabrication technology (Beijing: Beijing Industry University Press) pp1–87 (in Chinese) [顾文琪, 马向国, 李文萍 2006 聚焦离子束微纳加工技术 (北京: 北京工业大学出版社) 第1–87页]

    [19]

    Wei L, Cao L F, Fan W, Zang H P, Gao Y L, Zhu X L, Xie C Q, Gu Y Q, Zhang B H, Wang X F 2011 High Power Laser and Particle Beams 23 387 (in Chinese) [魏来, 曹磊峰, 范伟, 臧华平, 高宇林, 朱效立, 谢长青, 谷渝秋, 张保汉, 王晓方 2011 强激光与粒子束 23 387]

  • [1] Weng Yong-Chao, Kuang Long-Yu, Gao Nan, Cao Lei-Feng, Zhu Xiao-Li, Wang Xiao-Hua, Xie Chang-Qing. Reflection type single-order diffraction grating. Acta Physica Sinica, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [2] WU ZHENG-YUN, HUANG QI-SHENG. THE METHOD OF FOCUSED Ga+ ION BEAM IMPLANTATION TO FABRICATE SEMICONDUCTOR QUANTUM WELL WIRE. Acta Physica Sinica, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
    [3] Li L. H., Chen Lei-Ming, Li Pei-Gang, Fu Xiu-Li, Tang Wei-Hua, Zhang Hai-Ying. Fast fabrication of large-area nanopore arrays by FIB. Acta Physica Sinica, 2005, 54(2): 582-586. doi: 10.7498/aps.54.582
    [4] Li Zhao-Guo, Meng Ling-Biao, Zhou Min-Jie, Diao Kai-Di, Yi Yong, Zhu Xiao-Li, Wu Wei-Dong, Zhang Ji-Cheng. Fabrication of self-standing binary Gabor zone plate and its single order diffraction. Acta Physica Sinica, 2016, 65(12): 124207. doi: 10.7498/aps.65.124207
    [5] Xu Xing-Sheng, Chen Hong-Da, Xiong Zhi-Gang, Jin Ai-Zi, Zhang Dao-Zhong. Fabrication of photonic crystal on semiconductor materials by using focued ion-beam. Acta Physica Sinica, 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [6] Zhang Xue-Gui, Wang Chong, Lu Zhi-Quan, Yang Jie, Li Liang, Yang Yu. Evolution of Ge/Si quantum dots self-assembledgrown by ion beam sputtering. Acta Physica Sinica, 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [7] Xiong Fei, Yang Jie, Zhang Hui, Chen Gang, Yang Pei-Zhi. Growth evolution of Ge quantum dot modulated by the atom bombardment during ion beam sputtering deposition. Acta Physica Sinica, 2012, 61(21): 218101. doi: 10.7498/aps.61.218101
    [8] Yang Jie, Wang Chong, Jin Ying-Xia, Li Liang, Tao Dong-ping, Yang Yu. Underlying strain-induced growth of the self-assembled Ge quantum-dots prepared by ion beam sputtering deposition. Acta Physica Sinica, 2012, 61(1): 016804. doi: 10.7498/aps.61.016804
    [9] Xu Xiang-Dong, Liu Ying, Qiu Ke-Qiang, Liu Zheng-Kun, Hong Yi-Lin, Fu Shao-Jun. Ion beam etching for multilayer dielectric pulse compressor gratings with top layers of HfO2. Acta Physica Sinica, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [10] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [11] S. Y. TONG, TANG JING-CHANG. NORMAL ONE BEAM MODEL FOR FOURIER TRANSFORM ANALYSIS METHOD OF PHOTOELECTRON DIFFRACTION SPECTRUM. Acta Physica Sinica, 1984, 33(3): 362-369. doi: 10.7498/aps.33.362
    [12] Chen Shan-Shan, Liu Xing, Liu Zhi-Guang, Li Jia-Fang. Focused ion beam based nano-kirigami/origami for three-dimensional micro/nanomanufacturing and photonic applications. Acta Physica Sinica, 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [13] Li Jin-Qing, Luo Yun-Rong, Hai Wen-Hua. Quantum damping motion of a single trapped ion. Acta Physica Sinica, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [14] CHENG LU. THE PERTURBATION THEORY FOR THE FIRST-ORDER APPROXIMATION OF THE DIFFRACTION PROBLEMS. Acta Physica Sinica, 1966, 127(2): 223-232. doi: 10.7498/aps.22.223
    [15] Picart Pascal, Li Jun-Chang, Fan Ze-Bin, Song Qing-He, Tankam Patrice. The study of color digital holography free from the zero-order diffraction interruption. Acta Physica Sinica, 2011, 60(3): 034204. doi: 10.7498/aps.60.034204
    [16] Chen Xiao-Bo, Yang Guo-Jian, Li Song, Sawanobori N., Xu Yi-Zhuang, Chen Xiao-Duan, Zhou Gu. First-order and second-order infrared quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics. Acta Physica Sinica, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [17] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [18] Yang Qing-Yi, Lai Hai-Jiang, Wei Lian-Fu. . Acta Physica Sinica, 2002, 51(8): 1730-1735. doi: 10.7498/aps.51.1730
    [19] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [20] Shang Wan-Li, Yang Jia-Min, Zhao Yang, Zhu Tuo, Xiong Gang. General model of transmission grating diffraction efficiency. Acta Physica Sinica, 2011, 60(9): 094212. doi: 10.7498/aps.60.094212
  • Citation:
Metrics
  • Abstract views:  584
  • PDF Downloads:  1008
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2013
  • Accepted Date:  18 September 2013
  • Published Online:  05 January 2014

Fabrication and optical property characterization of quantum-dot-array diffraction grating with single order diffraction based on focused ion beam

  • 1. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China;
  • 2. Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
  • 3. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:  Project supported by the Open Foundation of Key Laboratory for Nonmetal Composites and Functional Materials of Sichuan Province, China (Grant No. 11zxfk19).

Abstract: Quantum-dot-array diffraction grating(QDADG), with an area of 200 μm×200 μm, a line density of 500 line/mm, an aperture size of 800 nm and a gold absorber of 500 nm thick, is successfully fabricated by focused ion beams. The diffraction properties and relative diffraction efficiencies of QDADG are measured at different transfer distance for 442 nm laser. It is shown that the high-order diffraction is removed from the spectra with only the ±1 and 0 order diffraction lines reserved. Moreover, in accordance with the calculated values obtained using the grating equation, variations of space between the 1st order and the 0th order increase gradually with the increase of transfer distance.

Reference (19)

Catalog

    /

    返回文章
    返回