Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile

Ke Shao-Ying Wang Chong Pan Tao He Peng Yang Jie Yang Yu

Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile

Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu
PDF
Get Citation
  • The simulation program AMPS-1D (analysis of microelectronic and photonic structures) employed to simulate and compare the performances of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cell with and without band gap grading at a radiation of AM1.5G (100 mW/cm2) and room temperature by introducing energy band engineering. The simulation results show that the efficiency of the solar cell with band gap grading is 0.477% higher than that without band gap grading due to the higher open circuit voltage (Voc) and better fill factor (FF). Subsequently, a-SiGe:H thin film solar cells with three different window layers such as hydrogenated amorphous silicon (a-Si:H), hydrogenated amorphous silicon carbide (a-SiC:H) and hydrogenated nanocrystalline silicon (nc-Si:H) are simulated, respectively. The numeric calculation results indicate that the fermi level EF of the a-SiGe:H thin film solar cell crosses the valence band when nc-Si:H window layer is employed in the simulation. This will improve the conductivity and the open circuit voltage of the solar cell. In addition, the electric field at front contact interface is reduced due to the lower contact barrier height. This may be more beneficial to the carrier collection by front contact. On the other hand, thanks to the wider band-gap difference between the window layer and the intrinsic layer, a potential barrier is built at the valence-band p/i interface due to the band offset. This will hinder the hole migration and collection. Thus, an nc-Si:H buffer layer, which can relax the valence-band offset and be more beneficial to the carrier migration and collection, is introduced at p/i interface. Finally, the optimum conversion efficiency of the a-SiGe:H thin film solar cell with graded band gap is achieved to be 9.104%.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274266, 10990103), the Science and Technology Project of Yunnan University, China (Grant No. 2012CG008), and the Key Project of Applied Basic Research Program of Yunnan Province, China (Grant No. 2013FA029).
    [1]

    Guha S 2004 Sol. Energy 77 887

    [2]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [3]

    Chou Y P, Lee S C 1998 J. Appl. Phys. 83 4111

    [4]

    Fei Y, Shi L B 2012 J. Atom. Molecul. Phys. 29 532 (in Chinese) [费英, 史力斌 2012 原子与分子物理学报 29 532]

    [5]

    Zambrano R J, Rubinelli F A, Arnoldbik W M, Rath J K, Schropp R E I 2004 Sol. Energy Mater. Sol. Cells 81 73

    [6]

    Wang C C, Wuu D S, Lien S Y, Lin Y S, Liu C Y, Hsu C H, Chen C F 2012 Int. J. Photoenergy 2012 1

    [7]

    Yun S J, Kim J K, Lim J W 2011 Electrochem. Solid-State Lett. 15 B9

    [8]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phys. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 物理学报 62 036102]

    [9]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [10]

    Fonash S J, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogosky M, Tran T, Zhu H, Rubinelli F 1997 The Pennsylvania State University Open Source License

    [11]

    Gueunier M E, Kleider J P, Chatterjee P, Roca i Cabarrocas P, Poissant Y 2003 Thin Solid Films 427 247

    [12]

    Li M B, Shi L B 2012 J. Chin. Chem. Soc. 40 934

    [13]

    Hsu H J, Hsu C H, Tsai C C 2012 J. Non-Cryst. Solids 358 2277

    [14]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3370 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 物理学报 54 3370]

    [15]

    Belfar A, Aïk-Kaci H 2012 Thin Solid Films 525 167

    [16]

    Rath J K, Schropp R E I 1998 Sol. Energy Mater. Sol. Cells 53 189

    [17]

    Chang P K, Hsu W T, Hsieh P T, Lu C H, Yeh C H, Houng M P 2012 Thin Solid Films 520 3096

    [18]

    Hu Z, Liao X, Diao H, Cai Y, Zhang S, Fortunato E, Martins R 2006 J. Non-Cryst. Solids 352 1900

    [19]

    Filonovich S A, Aguas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M, Silva L B, Fortunato E, Martins R 2009 Vacuum 83 1253

    [20]

    Vygranenko Y, Fathi E, Sazonov A, Vieira M, Nathan A 2010 Sol. Energy Mater. Sol. Cells 94 1860

    [21]

    Walsh K M 2007 J. Phys. D: Appl. Phys. 40 1007

    [22]

    Chen A, Zhu K 2012 Sol. Energy 86 393

    [23]

    Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [24]

    Zhang Y, Liu Y, L B, Tang N Y, Wang J Q, Zhang H Y 2009 Acta Phys. Sin. 58 2829 (in Chinese) [张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英 2009 物理学报 58 2829]

    [25]

    Roca I, Cabarrocas P, Ramprashad S, Liu J Z, Chu V, Maruyama A, Wagner S 1990 Conference Record of the 21st IEEE Photovoltaic Specialists Conference, Orlando, USA, May, 1990 p1610

    [26]

    Palit N, Chatterjee P 1999 J. Appl. Phys. 86 6879

  • [1]

    Guha S 2004 Sol. Energy 77 887

    [2]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [3]

    Chou Y P, Lee S C 1998 J. Appl. Phys. 83 4111

    [4]

    Fei Y, Shi L B 2012 J. Atom. Molecul. Phys. 29 532 (in Chinese) [费英, 史力斌 2012 原子与分子物理学报 29 532]

    [5]

    Zambrano R J, Rubinelli F A, Arnoldbik W M, Rath J K, Schropp R E I 2004 Sol. Energy Mater. Sol. Cells 81 73

    [6]

    Wang C C, Wuu D S, Lien S Y, Lin Y S, Liu C Y, Hsu C H, Chen C F 2012 Int. J. Photoenergy 2012 1

    [7]

    Yun S J, Kim J K, Lim J W 2011 Electrochem. Solid-State Lett. 15 B9

    [8]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phys. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 物理学报 62 036102]

    [9]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [10]

    Fonash S J, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogosky M, Tran T, Zhu H, Rubinelli F 1997 The Pennsylvania State University Open Source License

    [11]

    Gueunier M E, Kleider J P, Chatterjee P, Roca i Cabarrocas P, Poissant Y 2003 Thin Solid Films 427 247

    [12]

    Li M B, Shi L B 2012 J. Chin. Chem. Soc. 40 934

    [13]

    Hsu H J, Hsu C H, Tsai C C 2012 J. Non-Cryst. Solids 358 2277

    [14]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3370 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 物理学报 54 3370]

    [15]

    Belfar A, Aïk-Kaci H 2012 Thin Solid Films 525 167

    [16]

    Rath J K, Schropp R E I 1998 Sol. Energy Mater. Sol. Cells 53 189

    [17]

    Chang P K, Hsu W T, Hsieh P T, Lu C H, Yeh C H, Houng M P 2012 Thin Solid Films 520 3096

    [18]

    Hu Z, Liao X, Diao H, Cai Y, Zhang S, Fortunato E, Martins R 2006 J. Non-Cryst. Solids 352 1900

    [19]

    Filonovich S A, Aguas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M, Silva L B, Fortunato E, Martins R 2009 Vacuum 83 1253

    [20]

    Vygranenko Y, Fathi E, Sazonov A, Vieira M, Nathan A 2010 Sol. Energy Mater. Sol. Cells 94 1860

    [21]

    Walsh K M 2007 J. Phys. D: Appl. Phys. 40 1007

    [22]

    Chen A, Zhu K 2012 Sol. Energy 86 393

    [23]

    Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [24]

    Zhang Y, Liu Y, L B, Tang N Y, Wang J Q, Zhang H Y 2009 Acta Phys. Sin. 58 2829 (in Chinese) [张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英 2009 物理学报 58 2829]

    [25]

    Roca I, Cabarrocas P, Ramprashad S, Liu J Z, Chu V, Maruyama A, Wagner S 1990 Conference Record of the 21st IEEE Photovoltaic Specialists Conference, Orlando, USA, May, 1990 p1610

    [26]

    Palit N, Chatterjee P 1999 J. Appl. Phys. 86 6879

  • [1] Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo, Hao Hui-Ying. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [2] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [3] Li Xu-Dong, Wang Wen-Jing, Zhang Shi-Bin, Diao Hong-Wei, Zeng Xiang-Bo, Liao Xian-Bo, Xu Ying. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [4] Shuai Jia-Li, Liu Xiang-Xin, Yang Biao. Transport phenomenon of anormalous carriers in ferroelectric-semiconductor coupled solar cell. Acta Physica Sinica, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [5] Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo, Hao Hui-Ying. Computer simulation of a-Si:H/μc-Si:H diphasic silicon solar cells. Acta Physica Sinica, 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
    [6] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [7] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [8] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [10] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
  • Citation:
Metrics
  • Abstract views:  851
  • PDF Downloads:  572
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2013
  • Accepted Date:  14 October 2013
  • Published Online:  20 January 2014

Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile

  • 1. Institute of Optoelectronic Information Materials, Yunnan University, Kunming 650091, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11274266, 10990103), the Science and Technology Project of Yunnan University, China (Grant No. 2012CG008), and the Key Project of Applied Basic Research Program of Yunnan Province, China (Grant No. 2013FA029).

Abstract: The simulation program AMPS-1D (analysis of microelectronic and photonic structures) employed to simulate and compare the performances of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cell with and without band gap grading at a radiation of AM1.5G (100 mW/cm2) and room temperature by introducing energy band engineering. The simulation results show that the efficiency of the solar cell with band gap grading is 0.477% higher than that without band gap grading due to the higher open circuit voltage (Voc) and better fill factor (FF). Subsequently, a-SiGe:H thin film solar cells with three different window layers such as hydrogenated amorphous silicon (a-Si:H), hydrogenated amorphous silicon carbide (a-SiC:H) and hydrogenated nanocrystalline silicon (nc-Si:H) are simulated, respectively. The numeric calculation results indicate that the fermi level EF of the a-SiGe:H thin film solar cell crosses the valence band when nc-Si:H window layer is employed in the simulation. This will improve the conductivity and the open circuit voltage of the solar cell. In addition, the electric field at front contact interface is reduced due to the lower contact barrier height. This may be more beneficial to the carrier collection by front contact. On the other hand, thanks to the wider band-gap difference between the window layer and the intrinsic layer, a potential barrier is built at the valence-band p/i interface due to the band offset. This will hinder the hole migration and collection. Thus, an nc-Si:H buffer layer, which can relax the valence-band offset and be more beneficial to the carrier migration and collection, is introduced at p/i interface. Finally, the optimum conversion efficiency of the a-SiGe:H thin film solar cell with graded band gap is achieved to be 9.104%.

Reference (26)

Catalog

    /

    返回文章
    返回