Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defect state of the locally resonant phononic crystal

Hou Li-Na Hou Zhi-Lin Fu Xiu-Jun

Defect state of the locally resonant phononic crystal

Hou Li-Na, Hou Zhi-Lin, Fu Xiu-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By taking a two-dimensional solid local resonant phononic crystal as an example, we investigated the mechanism of the defect state on a subwavelength scale. It is well known that, when the working wavelength is much greater than the distance between resonators, the dispersion of the phononic crystal is insensitive to the lattice structure, and the whole structure can be described in terms of the effective medium theory. As a result, it is hard to introduce a defect state in the system by a local real-space disorder. It is shown in this paper that the dispersion of the local resonant phononic crystal can be understood from the long-range feature of the interaction between resonators, so the creation of a defect state in the system is in fact to break such a long-range interaction. Based on this understanding, the mechanisms of the recently reported methods, that are used to create defect states, are discussed. In addition, a waveguide structure that can guide the longitude or transverse waves separately is realized by introducing an anisotropic defect resonator.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274121).
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Sánchez-Pérez J, Caballero D, Mártinez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F 1998 Phys. Rev. Lett. 80 5325

    [3]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601

    [4]

    Wang G, Liu Y Z, Wen J H, Yu D L 2006 Chin. Phys. 15 407

    [5]

    Gao X W, Chen S B, Chen J B, Zheng Q H, Yang H 2012 Chin. Phys. B 21 064301

    [6]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [7]

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 侯志林, 傅秀军 2012 物理学报 61 104302]

    [8]

    Li X C, Yi X Y, Xiao Q W, Liang H Y 2006 Acta Phys. Sin. 55 2300 (in Chinese) [李晓春, 易秀英, 肖清武, 梁宏宇 2006 物理学报 55 2300]

    [9]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2006 Phononic Crystal (Beijing: National Defence Industry Press) p139 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2006 声子晶体 (北京: 国防工业出版社)]

    [10]

    Li Y, Hou Z L, Fu X J, Badreddine M A 2010 Chin. Phys. Lett. 27 074303

    [11]

    Kafesaki M, Sigalas M M, García N 2000 Phys. Rev. Lett. 85 4044

    [12]

    Hsu F C, Hsu J C, Huang T C, Wang C H, Chang P 2011 Appl. Phys. Lett. 98 143505

    [13]

    Mohammadi S, Eftekhar A A, Hunt W D, Adibi A 2009 Appl. Phys. Lett. 94 051906

    [14]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nature Communications. 3 756

    [15]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nature Materials. 10 620

    [16]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400

    [17]

    Psarobas I, Stefanou N, Modinos A 2000 Phys. Rev. B 62 5536

    [18]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [19]

    Liu Z Y, Chan C T, Sheng P 2002 Phys. Rev. B 65 165116

    [20]

    Wu Y, Lai Y, Zhang Z Q 2011 Phys. Rev. Lett. 107 105506

    [21]

    Fok L, Zhang X 2011 Phys. Rev. B 83 214304

    [22]

    Oudich M, Li Y, Assouar B M, Hou Z L 2010 New J. Phys. 12 083049

    [23]

    Oudich M, Assouar M B, Hou Z L 2010 Appl. Phys. Lett. 97 193503

    [24]

    Hung H H, Sun C T, 2009 New. J. Phys. 11 013003

    [25]

    Lemoult F, Kaina N, Fink M, Lerosey G 2012 Nature Phys. 9 55

    [26]

    Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X 2009 Phys. Status Solidi B 246 1397

    [27]

    Li T, Wang S M, Liu H, Li J Q, Wang F M, Zhu S N, Zhang X 2008 J. Appl. Phys. 103 023104

    [28]

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) (in Chinese) [黄昆 1988 固体物理学 (北京: 高等教育出版社)]

    [29]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Acoustics (2st) (Nanjing: Nanjing University Press) p210 (in Chinese) [杜功焕, 朱哲民, 龚秀芬 2001 声学基础 第二版 (南京: 南京大学出版社)]

  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Sánchez-Pérez J, Caballero D, Mártinez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F 1998 Phys. Rev. Lett. 80 5325

    [3]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601

    [4]

    Wang G, Liu Y Z, Wen J H, Yu D L 2006 Chin. Phys. 15 407

    [5]

    Gao X W, Chen S B, Chen J B, Zheng Q H, Yang H 2012 Chin. Phys. B 21 064301

    [6]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [7]

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 侯志林, 傅秀军 2012 物理学报 61 104302]

    [8]

    Li X C, Yi X Y, Xiao Q W, Liang H Y 2006 Acta Phys. Sin. 55 2300 (in Chinese) [李晓春, 易秀英, 肖清武, 梁宏宇 2006 物理学报 55 2300]

    [9]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2006 Phononic Crystal (Beijing: National Defence Industry Press) p139 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2006 声子晶体 (北京: 国防工业出版社)]

    [10]

    Li Y, Hou Z L, Fu X J, Badreddine M A 2010 Chin. Phys. Lett. 27 074303

    [11]

    Kafesaki M, Sigalas M M, García N 2000 Phys. Rev. Lett. 85 4044

    [12]

    Hsu F C, Hsu J C, Huang T C, Wang C H, Chang P 2011 Appl. Phys. Lett. 98 143505

    [13]

    Mohammadi S, Eftekhar A A, Hunt W D, Adibi A 2009 Appl. Phys. Lett. 94 051906

    [14]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nature Communications. 3 756

    [15]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nature Materials. 10 620

    [16]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400

    [17]

    Psarobas I, Stefanou N, Modinos A 2000 Phys. Rev. B 62 5536

    [18]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [19]

    Liu Z Y, Chan C T, Sheng P 2002 Phys. Rev. B 65 165116

    [20]

    Wu Y, Lai Y, Zhang Z Q 2011 Phys. Rev. Lett. 107 105506

    [21]

    Fok L, Zhang X 2011 Phys. Rev. B 83 214304

    [22]

    Oudich M, Li Y, Assouar B M, Hou Z L 2010 New J. Phys. 12 083049

    [23]

    Oudich M, Assouar M B, Hou Z L 2010 Appl. Phys. Lett. 97 193503

    [24]

    Hung H H, Sun C T, 2009 New. J. Phys. 11 013003

    [25]

    Lemoult F, Kaina N, Fink M, Lerosey G 2012 Nature Phys. 9 55

    [26]

    Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X 2009 Phys. Status Solidi B 246 1397

    [27]

    Li T, Wang S M, Liu H, Li J Q, Wang F M, Zhu S N, Zhang X 2008 J. Appl. Phys. 103 023104

    [28]

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) (in Chinese) [黄昆 1988 固体物理学 (北京: 高等教育出版社)]

    [29]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Acoustics (2st) (Nanjing: Nanjing University Press) p210 (in Chinese) [杜功焕, 朱哲民, 龚秀芬 2001 声学基础 第二版 (南京: 南京大学出版社)]

  • [1] Zhang Si-Wen, Wu Jiu-Hui. Low-frequency band gaps in phononic crystals with composite locally resonant structures. Acta Physica Sinica, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [2] Cheng Cong, Wu Fu-Gen, Zhang Xin, Yao Yuan-Wei. Phononic crystal multi-channel low-frequency filter based on locally resonant unit. Acta Physica Sinica, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [3] Wen Qi-Hua, Zuo Shu-Guang, Wei Huan. Locally resonant elastic wave band gaps in flexural vibration of multi-oscillators beam. Acta Physica Sinica, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [4] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [5] Gao Dong-Bao, Zeng Xin-Wu, Zhou Ze-Min, Tian Zhang-Fu. Experiments on defect mode of one-dimensional phononic crystal containing Helmholtz resonators. Acta Physica Sinica, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [6] Wu Jian, Bai Xiao-Chun, Xiao Yong, Geng Ming-Xin, Yu Dian-Long, Wen Ji-Hong. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate. Acta Physica Sinica, 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [7] Li Xiao-Chun, Liang Hong-Yu, Yi Xiu-Ying, Xiao Qing-Wu, Zhao Bao-Xing. The study of two-dimensional composite materials with wide band gap. Acta Physica Sinica, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [8] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [9] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [10] Zhao Huan-Yu, He Cun-Fu, Wu Bin, Wang Yue-Sheng. Experimental investigation of two-dimensional multi-point defect phononic crystals with square lattice. Acta Physica Sinica, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [11] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [12] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [13] Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [14] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [15] Liu Qi-Neng. Analytic method of studying defect mode of 1D doped phononic crystal. Acta Physica Sinica, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [16] Hua Jia, Zhang Shu, Cheng Jian-Chun. Mechanism of broad acoustic band-gap in the three-component composite. Acta Physica Sinica, 2005, 54(3): 1261-1266. doi: 10.7498/aps.54.1261
    [17] Chen Xin, Yao Hong, Zhao Jing-Bo, Zhang Shuai, He Zi-Hou, Jiang Juan-Na. Band gap of structure coupling Helmholtz resonator with elastic oscillator. Acta Physica Sinica, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [18] Zhu Xi-Xi, Xiao Yong, Wen Ji-Hong, Yu Dian-Long. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate. Acta Physica Sinica, 2016, 65(17): 176202. doi: 10.7498/aps.65.176202
    [19] Liu Min, Hou Zhi-Lin, Fu Xiu-Jun. Local resonant acoustic band gaps in two-dimensional square-arranged Helmholtz resonators array. Acta Physica Sinica, 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [20] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
  • Citation:
Metrics
  • Abstract views:  1370
  • PDF Downloads:  787
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2013
  • Accepted Date:  03 November 2013
  • Published Online:  05 February 2014

Defect state of the locally resonant phononic crystal

  • 1. Department of Physics, South China University of Technology, Guangzhou 510640, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11274121).

Abstract: By taking a two-dimensional solid local resonant phononic crystal as an example, we investigated the mechanism of the defect state on a subwavelength scale. It is well known that, when the working wavelength is much greater than the distance between resonators, the dispersion of the phononic crystal is insensitive to the lattice structure, and the whole structure can be described in terms of the effective medium theory. As a result, it is hard to introduce a defect state in the system by a local real-space disorder. It is shown in this paper that the dispersion of the local resonant phononic crystal can be understood from the long-range feature of the interaction between resonators, so the creation of a defect state in the system is in fact to break such a long-range interaction. Based on this understanding, the mechanisms of the recently reported methods, that are used to create defect states, are discussed. In addition, a waveguide structure that can guide the longitude or transverse waves separately is realized by introducing an anisotropic defect resonator.

Reference (29)

Catalog

    /

    返回文章
    返回