Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new method of background elimination and baseline correction for the first harmonic

Zhang Rui Zhao Xue-Hong Hu Ya-Jun Guo Yuan Wang Zhe Zhao Ying Li Zhi-Xiao Wang Yan

A new method of background elimination and baseline correction for the first harmonic

Zhang Rui, Zhao Xue-Hong, Hu Ya-Jun, Guo Yuan, Wang Zhe, Zhao Ying, Li Zhi-Xiao, Wang Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new method of background elimination and baseline correction is proposed, since there are background signal and larger baseline signal in the first harmonic (1f) of the tunable diode laser absorption spectroscopy (TDLAS). The laser-associated intensity modulation signal, electronic noise, and optical interference fringes of the 1f background are analyzed. Harmonic detection in none absorption spectral region (HDINASR) is used to eliminate the background signal. Then the relationship curve between current and intensity is given in different operating temperatures to design a remaining baseline correction method after eliminating the background. The principle of background signal searching and the LabView software flow chart are also given. The TDLAS experimental system is designed to detect hydrogen fluoride (HF) gas. According to spectral line selection principle, the absorption line -1312.59 nm is selected, whose operating temperature is set at 27.0 ℃ and the background temperature is set at 30.2 ℃. After eliminating the background and correcting the baseline, signal distortion is significantly improved and baseline is corrected. Then it is verified that the method is valid at other operating temperature of the laser (26.7-27.2). And the improvement of HF gas concentration is quantitatively analyzed. It is convenient for the subsequent processing of 1f signal.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2010CB327800)、the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090032110053).
    [1]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [2]

    Li J Y, Du Z H, Ma Y W, Xu K X 2013 Chin. Phys. B 22 034203

    [3]
    [4]
    [5]

    Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214 (in Chinese)[张亮刘建国阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 物理学报 61 034214]

    [6]
    [7]

    Zhang Y G, Gu Y, Zhang X J, Li A Z, Tian S B 2008 Chin. Phys. Lett. 25 3246

    [8]
    [9]

    Gustafsson J, Chekalin N, Axner O 2003 Spectrochimica Acta Part B 58 123

    [10]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Huang J T, Han X L 2012 Acta Phys. Sin. 61 050701

    [11]
    [12]
    [13]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867

    [14]

    Werle P 1998 Spectrochimica Acta A 54 197

    [15]
    [16]
    [17]

    Chakraborty A L, Ruxton K, Johnstone W, Michael L, Duffin K 2009 Opt. Express 17 9602

    [18]

    Chakraborty A L, Ruxton K, Johnstone W 2010 Opt. Express 18 267

    [19]
    [20]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [21]
    [22]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [23]
    [24]

    Ren W, Jeffries J B, Hanson R K 2010 Meas. Sci. Technol. 2 1

    [25]
    [26]
    [27]

    Cai T D, Gao G Z, Liu Y 2012 Appl. Spectrosc. 66 1210

    [28]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987

    [29]
    [30]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D M 2007 J. of Lightwave Technology 25 3114

    [31]
    [32]

    Cao J N, Zhang K K, Wang Z 2010 Chinese Journal of Scientific Intrument 31 2597(in Chinese) [曹家年, 张可可, 王琢2010 仪器仪表学报 31 2597]

    [33]
    [34]

    Ruxton K, Chakraborty A L, Johnstone W, Lengden M, Stewart G, Duffin K 2010 Sensors Actuators B 150 367

    [35]
    [36]
    [37]

    Li L, Arsad N, Stewart G, Thursby G, Culshaw B, Wang Y D 2011 Opt. Communications 284 312

    [38]

    Reid J, M. El-Sherbiny, Garside B K, EI-Sherbiny M, Garside B K, Ballik E A 1980 Appl. Opt. 19 3349

    [39]
    [40]
    [41]

    Silver J A, Stanton A C 1988 Appl. Opt. 27 1914

    [42]
    [43]

    Johnson T J, Wienhold F G, Burrow J P, Harris G W 1991 Appl. Opt. 30 407

    [44]

    Wu S Q, Kimishima T, Kuze H, Takeuchi N 2000 Appl. Phys. 39 4034

    [45]
    [46]
    [47]

    Werle P W, Mazzinghi P, D'Amato F, De Rosa M, Maurer K, Slemr F 2004 Spectrochimica Acta A 60 1685

    [48]
    [49]

    Xu Z Y, Liu W Q, Han R F, Zhang Y J, Zhang S, Shu X W, Geng H, He Y, Tang Y Y 2010 Spectrosc. m Spectral Anal. 30 2201 (in Chinese) [许振宇, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 张帅, 束小文, 耿辉, 何莹, 汤媛媛 2010光谱学与光谱分析 30 2201]

    [50]
    [51]

    Li N, Yan J H, Wang F, Chi Y, Cen K F 2008 Spectrosc. m Spectral Anal. 28 1708 (in Chinese) [李宁, 严建华, 王飞, 池涌, 岑可法 2008 光谱学与光谱分析 28 1708]

    [52]
    [53]

    Sun Y, Du Z H, Yin X, Xu K X 2008 Spectrosc. m Spectral Anal. 28 2282 (in Chinese) [孙毅杜振辉, 尹新, 徐可欣 2008 光谱学与光谱分析 28 2282]

    [54]
    [55]

    Lunga G D, Pogni R, Basosi R 1994 J. Magn. Reson. Series A 108 65

    [56]

    Hu Y G, Zhao Z Y, Wang G 2011 J. Huazhong Univ. of Sci. Tech (Natural Science Edition) 39 36(in Chinese) [胡耀垓, 赵正予, 王刚2011华中科技大学学报(自然科学版) 39 36]

    [57]
    [58]

    Liu Y, Liu K, Tao W L, Wang X P 2010 Spectrosc. Spectral Anal. 30 1688 (in Chinese) [刘艳, 刘凯, 陶维亮, 王先培2010光谱学与光谱分析 30 1688]

    [59]
    [60]

    Bomse D S, Kane D J 2006 Appl. Phys. B 85 461

    [61]
    [62]
    [63]

    Zhang R, Zhao X H, Hu Y J, Guo Y, Liu Y L, Wang Y 2013 Acta Optica Sinica 33 0430006 (in Chinese) [张锐, 赵学玒, 胡雅君, 郭媛, 刘艳丽, 汪曣 2013 光学学报 33 0430006]

    [64]
    [65]

    McGettrick A J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. of Lightwave Technology 26 432

    [66]
    [67]

    Han R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Wang M, Gao S H, Chen D 2006 Acta Optica Sinica 26 67(in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 王敏, 高山虎, 陈东 2006光学学报 33 67]

  • [1]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [2]

    Li J Y, Du Z H, Ma Y W, Xu K X 2013 Chin. Phys. B 22 034203

    [3]
    [4]
    [5]

    Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214 (in Chinese)[张亮刘建国阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 物理学报 61 034214]

    [6]
    [7]

    Zhang Y G, Gu Y, Zhang X J, Li A Z, Tian S B 2008 Chin. Phys. Lett. 25 3246

    [8]
    [9]

    Gustafsson J, Chekalin N, Axner O 2003 Spectrochimica Acta Part B 58 123

    [10]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Huang J T, Han X L 2012 Acta Phys. Sin. 61 050701

    [11]
    [12]
    [13]

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867

    [14]

    Werle P 1998 Spectrochimica Acta A 54 197

    [15]
    [16]
    [17]

    Chakraborty A L, Ruxton K, Johnstone W, Michael L, Duffin K 2009 Opt. Express 17 9602

    [18]

    Chakraborty A L, Ruxton K, Johnstone W 2010 Opt. Express 18 267

    [19]
    [20]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [21]
    [22]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [23]
    [24]

    Ren W, Jeffries J B, Hanson R K 2010 Meas. Sci. Technol. 2 1

    [25]
    [26]
    [27]

    Cai T D, Gao G Z, Liu Y 2012 Appl. Spectrosc. 66 1210

    [28]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987

    [29]
    [30]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D M 2007 J. of Lightwave Technology 25 3114

    [31]
    [32]

    Cao J N, Zhang K K, Wang Z 2010 Chinese Journal of Scientific Intrument 31 2597(in Chinese) [曹家年, 张可可, 王琢2010 仪器仪表学报 31 2597]

    [33]
    [34]

    Ruxton K, Chakraborty A L, Johnstone W, Lengden M, Stewart G, Duffin K 2010 Sensors Actuators B 150 367

    [35]
    [36]
    [37]

    Li L, Arsad N, Stewart G, Thursby G, Culshaw B, Wang Y D 2011 Opt. Communications 284 312

    [38]

    Reid J, M. El-Sherbiny, Garside B K, EI-Sherbiny M, Garside B K, Ballik E A 1980 Appl. Opt. 19 3349

    [39]
    [40]
    [41]

    Silver J A, Stanton A C 1988 Appl. Opt. 27 1914

    [42]
    [43]

    Johnson T J, Wienhold F G, Burrow J P, Harris G W 1991 Appl. Opt. 30 407

    [44]

    Wu S Q, Kimishima T, Kuze H, Takeuchi N 2000 Appl. Phys. 39 4034

    [45]
    [46]
    [47]

    Werle P W, Mazzinghi P, D'Amato F, De Rosa M, Maurer K, Slemr F 2004 Spectrochimica Acta A 60 1685

    [48]
    [49]

    Xu Z Y, Liu W Q, Han R F, Zhang Y J, Zhang S, Shu X W, Geng H, He Y, Tang Y Y 2010 Spectrosc. m Spectral Anal. 30 2201 (in Chinese) [许振宇, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 张帅, 束小文, 耿辉, 何莹, 汤媛媛 2010光谱学与光谱分析 30 2201]

    [50]
    [51]

    Li N, Yan J H, Wang F, Chi Y, Cen K F 2008 Spectrosc. m Spectral Anal. 28 1708 (in Chinese) [李宁, 严建华, 王飞, 池涌, 岑可法 2008 光谱学与光谱分析 28 1708]

    [52]
    [53]

    Sun Y, Du Z H, Yin X, Xu K X 2008 Spectrosc. m Spectral Anal. 28 2282 (in Chinese) [孙毅杜振辉, 尹新, 徐可欣 2008 光谱学与光谱分析 28 2282]

    [54]
    [55]

    Lunga G D, Pogni R, Basosi R 1994 J. Magn. Reson. Series A 108 65

    [56]

    Hu Y G, Zhao Z Y, Wang G 2011 J. Huazhong Univ. of Sci. Tech (Natural Science Edition) 39 36(in Chinese) [胡耀垓, 赵正予, 王刚2011华中科技大学学报(自然科学版) 39 36]

    [57]
    [58]

    Liu Y, Liu K, Tao W L, Wang X P 2010 Spectrosc. Spectral Anal. 30 1688 (in Chinese) [刘艳, 刘凯, 陶维亮, 王先培2010光谱学与光谱分析 30 1688]

    [59]
    [60]

    Bomse D S, Kane D J 2006 Appl. Phys. B 85 461

    [61]
    [62]
    [63]

    Zhang R, Zhao X H, Hu Y J, Guo Y, Liu Y L, Wang Y 2013 Acta Optica Sinica 33 0430006 (in Chinese) [张锐, 赵学玒, 胡雅君, 郭媛, 刘艳丽, 汪曣 2013 光学学报 33 0430006]

    [64]
    [65]

    McGettrick A J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. of Lightwave Technology 26 432

    [66]
    [67]

    Han R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Wang M, Gao S H, Chen D 2006 Acta Optica Sinica 26 67(in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 王敏, 高山虎, 陈东 2006光学学报 33 67]

  • [1] Zhang Liang, Liu Jian-Guo, Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Xu Zhen-Yu, Chen Jun. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [2] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [3] Zhang Rui, Zhao Xue-Hong, Zhao Ying, Wang Zhe, Wang Yan. Laser characteristic effect on the trace gas detection. Acta Physica Sinica, 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [4] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [5] Chen Jiu-Ying, Liu Jian-Guo, He Ya-Bai, Wang Liao, Gang Qiang, Xu Zhen-Yu, Yao Lu, Yuan Song, Ruan Jun, He Jun-Feng, Dai Yun-Hai, Kan Rui-Feng. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm. Acta Physica Sinica, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [6] Xia Hua, Wu Bian, Zhang Zhi-Rong, Pang Tao, Dong Feng-Zhong, Wang Yu. Stability study on high sensitive CO monitoring in near-infrared. Acta Physica Sinica, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [7] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [8] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [9] MU GUO-GUANG, KANG HUI, LI ZHENG-MING. THE ELIMINATION OF BRIGHT CONTINUOUS SPECTRAL BACKGROUND IN SPECTROGRAM BY MEANS OF COHERENT OPTICAL PROCESSING. Acta Physica Sinica, 1980, 177(6): 794-798. doi: 10.7498/aps.29.794
    [10] Xu Zhen-Yu, Liu Wen-Qing, Liu Jian-Guo, He Jun-Feng, Yao Lu, Ruan Jun, Chen Jiu-Ying, Li Han, Yuan Song, Geng Hui, Kan Rui-Feng. Temperature measurements based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [11] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [12] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [13] Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying. High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [14] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [15] Cao Ya-Nan, Wang Gui-Shi, Tan Tu, Wang Lei, Mei Jiao-Xu, Cai Ting-Dong, Gao Xiao-Ming. Concentration and pressure measurement of water vapor in sealed glass containers based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [16] Yin Ming, Zhou Shou-Huan, Feng Guo-Ying. Tunable high efficiency broadband second-harmonic conversion in quasi-phase matching. Acta Physica Sinica, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [17] ZOU BEN-SAN, YE HENG-QIANG, WU YU-KUN, GUO KE-XIN. ON REDUCTION OF THE HIGH ORDER TWINNING IN FCC STRUCTURE TO A SINGLE ROTATION RELATIONSHIP. Acta Physica Sinica, 1979, 166(3): 297-304. doi: 10.7498/aps.28.297
    [18] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [19] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [20] Mao Song, Wu Zheng-Mao, Fan Li, Yang Hai-Bo, Zhao Mao-Rong, Xia Guang-Qiong. Acquiring narrow linewidth microwave signals based on an optical injection semiconductor laser under subharmonic microwave modulation. Acta Physica Sinica, 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
  • Citation:
Metrics
  • Abstract views:  1002
  • PDF Downloads:  1017
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2013
  • Accepted Date:  11 December 2013
  • Published Online:  05 April 2014

A new method of background elimination and baseline correction for the first harmonic

  • 1. College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China;
  • 2. College of Electronic Information and Automation, Tianjin University of Science & Technology, Tianjin 300222, China
Fund Project:  Project supported by the National Basic Research Program of China(Grant No. 2010CB327800)、the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090032110053).

Abstract: A new method of background elimination and baseline correction is proposed, since there are background signal and larger baseline signal in the first harmonic (1f) of the tunable diode laser absorption spectroscopy (TDLAS). The laser-associated intensity modulation signal, electronic noise, and optical interference fringes of the 1f background are analyzed. Harmonic detection in none absorption spectral region (HDINASR) is used to eliminate the background signal. Then the relationship curve between current and intensity is given in different operating temperatures to design a remaining baseline correction method after eliminating the background. The principle of background signal searching and the LabView software flow chart are also given. The TDLAS experimental system is designed to detect hydrogen fluoride (HF) gas. According to spectral line selection principle, the absorption line -1312.59 nm is selected, whose operating temperature is set at 27.0 ℃ and the background temperature is set at 30.2 ℃. After eliminating the background and correcting the baseline, signal distortion is significantly improved and baseline is corrected. Then it is verified that the method is valid at other operating temperature of the laser (26.7-27.2). And the improvement of HF gas concentration is quantitatively analyzed. It is convenient for the subsequent processing of 1f signal.

Reference (67)

Catalog

    /

    返回文章
    返回