搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究

宋俊玲 洪延姬 王广宇 潘虎

引用本文:
Citation:

基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究

宋俊玲, 洪延姬, 王广宇, 潘虎

Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy

Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu
PDF
导出引用
  • 基于可调谐半导体激光吸收光谱技术和代数迭代算法(ART)实现燃烧场温度和浓度二维分布重建. 采用时分复用技术, 在1 kHz扫描频率下分别扫描H2O的两条吸收谱线, 7205.25和7416.05 cm-1, 对温度分布在300—1100 K范围内的气体温度场进行了重建. 研究了投影角度和投影光线数目对温度场和浓度场重建结果的影响, 并将温度场重建结果与热电偶测量结果进行比较, 结果表明, 采用四个投影方向时, 温度场重建结果与热电偶测量结果除中心低温区域外基本符合. 当光线数目减少时, 通过在两条光线间增加虚拟光线, 代入到迭代算法中, 增加光线数目, 提高了温度场和浓度场的重建效果. 但此方法受到燃烧场温度梯度大小的影响, 即在两条光线之间气体温度梯度较大, 增加虚拟光线提高温度场重建效果不明显.
    Based on the tunable diode laser absorption spectroscopy, the combustion gas concentration and temperature distribution are reconstructed using algebraic iterative reconstruction technique (ART). Time division multiplexing technology is adopted to scan two H2O absorption transitions (7205.25 cm-1 and 7416.05 cm-1) simultaneously at 1 kHz repetition rate. The influences of projected angle and the number of beams on the temperature and concentration field reconstruction are studied. Compared with the thermocouple readings, the temperature distribution reconstruction has a well agreement except a low temperature area in the middle of the combustion field. Aiming to achieve an optimal reconstruction with a limited number of beams, a few virtual beams are added to the ART method. Through this method, the effectivenesses of temperature and concentration field reconstructions increase, but there is not an obvious improvement when a large gradient of temperature exists between two lines.
    • 基金项目: 国家自然科学基金(批准号: 90916015)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 90916015).
    [1]

    Brown M S 2012 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, January 09-12, 2012

    [2]

    Jackson K R, Gruber M R, Buccellato S 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, April 11-14, 2011

    [3]

    Lindstrom C D, Jackson K R, Williams S 2009 AIAA J. 47 2368

    [4]

    Liu J T C, Rieker G B, Jeffries J B, Gruber M R, Carter D C, Mathur T, Hanson R K 2005 Appl. Opt. 44 6701

    [5]

    Liu X, Jefferies J B, Hanson R K 2007 AIAA J. 45 411

    [6]

    Lyle K H, Jeffries J B, Hanson R K, Winter M 2007 AIAA J. 45 2213

    [7]

    Yu X, Li F, Chen L 2010 Acta Mech. Sin. 26 147

    [8]

    Lou N, Li N, Wen C 2012 Spectrosc Spec. Anal. 32 1329 (in Chinese) [娄南征, 李宁, 翁春生 2012 光谱学与光谱分析 32 1329]

    [9]

    Li N, Wen C 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [10]

    Busa K M, Bryner E, McDaniel J C, Goyne C P, Smith C T 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida City, January, 4-7, 2011

    [11]

    Kasyutich V L, Martin P A 2011 Appl. Phys. B 102 149

    [12]

    Wang F, Cen K F, Li N 2010 Meas. Sci. Technol. 21 1

    [13]

    Li N, Weng C 2011 Chin. Opt. Lett. 9 061201

    [14]

    Ma L, Cai W 2008 Appl. Opt. 47 4187

    [15]

    Ma L, Cai W W, Caswell A W, Kraetshmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602

    [16]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. RA 110 533

    [17]

    Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459

    [18]

    Zhou X, Jeffries J B, Hanson R K 2005 Appl. Phys. B 81 711

    [19]

    Hansen P C, Hansen M S 2012 J. Comput Appl. Math. 236 2167

  • [1]

    Brown M S 2012 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, January 09-12, 2012

    [2]

    Jackson K R, Gruber M R, Buccellato S 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, April 11-14, 2011

    [3]

    Lindstrom C D, Jackson K R, Williams S 2009 AIAA J. 47 2368

    [4]

    Liu J T C, Rieker G B, Jeffries J B, Gruber M R, Carter D C, Mathur T, Hanson R K 2005 Appl. Opt. 44 6701

    [5]

    Liu X, Jefferies J B, Hanson R K 2007 AIAA J. 45 411

    [6]

    Lyle K H, Jeffries J B, Hanson R K, Winter M 2007 AIAA J. 45 2213

    [7]

    Yu X, Li F, Chen L 2010 Acta Mech. Sin. 26 147

    [8]

    Lou N, Li N, Wen C 2012 Spectrosc Spec. Anal. 32 1329 (in Chinese) [娄南征, 李宁, 翁春生 2012 光谱学与光谱分析 32 1329]

    [9]

    Li N, Wen C 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [10]

    Busa K M, Bryner E, McDaniel J C, Goyne C P, Smith C T 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida City, January, 4-7, 2011

    [11]

    Kasyutich V L, Martin P A 2011 Appl. Phys. B 102 149

    [12]

    Wang F, Cen K F, Li N 2010 Meas. Sci. Technol. 21 1

    [13]

    Li N, Weng C 2011 Chin. Opt. Lett. 9 061201

    [14]

    Ma L, Cai W 2008 Appl. Opt. 47 4187

    [15]

    Ma L, Cai W W, Caswell A W, Kraetshmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602

    [16]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. RA 110 533

    [17]

    Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459

    [18]

    Zhou X, Jeffries J B, Hanson R K 2005 Appl. Phys. B 81 711

    [19]

    Hansen P C, Hansen M S 2012 J. Comput Appl. Math. 236 2167

  • [1] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [2] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [3] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [4] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [5] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [6] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [7] 张锐, 赵学玒, 胡雅君, 郭媛, 王喆, 赵迎, 李子晓, 汪曣. 一种用于一次谐波背景消除与基线校正的新型方法. 物理学报, 2014, 63(7): 070702. doi: 10.7498/aps.63.070702
    [8] 张锐, 赵学玒, 赵迎, 王喆, 汪曣. 激光器特性在痕量气体检测中的影响. 物理学报, 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [9] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜. 近红外波段CO高灵敏检测的稳定性研究. 物理学报, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [10] 陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰. 2.0 μm处CO2高温谱线参数测量研究. 物理学报, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [11] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [12] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [13] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [14] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究. 物理学报, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [15] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [16] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [17] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建. 物理学报, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [18] 张 凯, 朱佩平, 黄万霞, 袁清习, 刘 力, 袁 斌, 王寯越, 舒 航, 陈 博, 刘宜晋, 李恩荣, 刘小松, 吴自玉. 代数迭代重建算法在折射衬度CT中的应用. 物理学报, 2008, 57(6): 3410-3418. doi: 10.7498/aps.57.3410
    [19] 向良忠, 邢 达, 谷怀民, 杨迪武, 杨思华, 曾吕明. 改进的同步迭代算法在光声血管成像中的应用. 物理学报, 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  8164
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-18
  • 修回日期:  2012-07-09
  • 刊出日期:  2012-12-05

/

返回文章
返回