Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon

Zhu Jin-Hui Wei Yuan Xie Hong-Gang Niu Sheng-Li Huang Liu-Xing

Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon

Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing
PDF
Get Citation
  • The displacement damage due to non-ionizing energy loss (NIEL) is the main reason of photo-electronic device failure in space radiation environment. The basic mechanisms of NIEL are Coulomb and nuclear interactions of silicon atoms with incident protons at energies ranging from threshold to 1 GeV. In the low energy region where the Coulomb interaction is dominant, the NIEL can be calculated by analytical method and TRIM code. MCNPX/HTAPE3X is used to calculate NIEL when the nuclear elastic and non-elastic interactions between proton and target atoms are significant in the high energy range. The results show that it is reasonable to use MCNPX/HTAPE3X to evaluate the NIEL by recoiling nucleus caused by high energy protons. The combination of analytical method and TRIM code can calculate NIEL induced by Coulomb interaction in low energy range, which gives the NIEL of proton in silicon in an energy range from 300 eV to 1 GeV.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175271).
    [1]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301

    [2]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372

    [3]

    Jun I 2001 IEEE Trans. Nucl. Sci. 48 162

    [4]

    Luo W Y, Wang C Z, He X F, Fan S, Huang X L, Wang C S 2006 High Energy Phys. Nucl. Phys. 30 1088 (in Chinese) [罗文芸, 王朝壮, 贺新福, 樊胜, 黄小龙, 王传珊 2006 高能物理与核物理 30 1088]

    [5]

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266]

    [6]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summer G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

    [7]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595

    [9]

    Jun I, Xapos M A, Burke E A 2004 IEEE Trans. Nucl. Sci. 51 3207

    [10]

    Fudan Univ., Tsinghua Univ., Peking Univ. 1997 Experimental Method of Nuclear Physics (Beijing: Atomic Energy Press) p47 (in Chinese) [复旦大学, 清华大学, 北京大学 1997 原子核物理实验方法 (北京: 原子能出版社) 第47页]

    [11]

    Pelowitz D B 2008 MCNPX User’s Manual Version 2.6.0 (Los Alamos: Los Alamos National Laboratory)

  • [1]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301

    [2]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372

    [3]

    Jun I 2001 IEEE Trans. Nucl. Sci. 48 162

    [4]

    Luo W Y, Wang C Z, He X F, Fan S, Huang X L, Wang C S 2006 High Energy Phys. Nucl. Phys. 30 1088 (in Chinese) [罗文芸, 王朝壮, 贺新福, 樊胜, 黄小龙, 王传珊 2006 高能物理与核物理 30 1088]

    [5]

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266]

    [6]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summer G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

    [7]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595

    [9]

    Jun I, Xapos M A, Burke E A 2004 IEEE Trans. Nucl. Sci. 51 3207

    [10]

    Fudan Univ., Tsinghua Univ., Peking Univ. 1997 Experimental Method of Nuclear Physics (Beijing: Atomic Energy Press) p47 (in Chinese) [复旦大学, 清华大学, 北京大学 1997 原子核物理实验方法 (北京: 原子能出版社) 第47页]

    [11]

    Pelowitz D B 2008 MCNPX User’s Manual Version 2.6.0 (Los Alamos: Los Alamos National Laboratory)

  • [1] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [2] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [3] He Xin-Fu, Luo Wen-Yun, Zha Yuan-Zi, Wang Chuan-Shan, Tang Xin-Xin, Wang Chao-Zhuang, Fan Sheng, Huang Xiao-Long. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [4] Xing Yong-Zhong, Liu Jian-Ye, Guo Wen-Jun, Hao Huan-Feng. The isospin effects on the momentum dissipation induced by the Coulomb interacti on in the process of heavy-ion collissions. Acta Physica Sinica, 2005, 54(4): 1538-1542. doi: 10.7498/aps.54.1538
    [5] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [6] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [7] Zheng Jun, Li Chun-Lei, Yang Xi, Guo Yong. Spin and charge Nernst effect in a four-terminal double quantum dot system. Acta Physica Sinica, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [8] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [9] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [10] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
  • Citation:
Metrics
  • Abstract views:  1033
  • PDF Downloads:  583
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2013
  • Accepted Date:  28 November 2013
  • Published Online:  20 March 2014

Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon

  • 1. Northwest Institute of Nuclear Technology, Xi’an 710024, China;
  • 2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi’an 710024, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11175271).

Abstract: The displacement damage due to non-ionizing energy loss (NIEL) is the main reason of photo-electronic device failure in space radiation environment. The basic mechanisms of NIEL are Coulomb and nuclear interactions of silicon atoms with incident protons at energies ranging from threshold to 1 GeV. In the low energy region where the Coulomb interaction is dominant, the NIEL can be calculated by analytical method and TRIM code. MCNPX/HTAPE3X is used to calculate NIEL when the nuclear elastic and non-elastic interactions between proton and target atoms are significant in the high energy range. The results show that it is reasonable to use MCNPX/HTAPE3X to evaluate the NIEL by recoiling nucleus caused by high energy protons. The combination of analytical method and TRIM code can calculate NIEL induced by Coulomb interaction in low energy range, which gives the NIEL of proton in silicon in an energy range from 300 eV to 1 GeV.

Reference (11)

Catalog

    /

    返回文章
    返回